login
A035740
Coordination sequence for 45-dimensional cubic lattice.
2
1, 90, 4050, 121530, 2736450, 49329018, 741759570, 9572143770, 108242937090, 1089874371610, 9895463694162, 81854600165370, 622155720985410, 4376493499269690, 28667877399006930, 175800225426741978, 1013960660749554690
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (45, -990, 14190, -148995, 1221759, -8145060, 45379620, -215553195, 886163135, -3190187286, 10150595910, -28760021745, 73006209045, -166871334960, 344867425584, -646626422970, 1103068603890, -1715884494940, 2438362177020, -3169870830126, 3773655750150, -4116715363800, 4116715363800, -3773655750150, 3169870830126, -2438362177020, 1715884494940, -1103068603890, 646626422970, -344867425584, 166871334960, -73006209045, 28760021745, -10150595910, 3190187286, -886163135, 215553195, -45379620, 8145060, -1221759, 148995, -14190, 990, -45, 1).
FORMULA
G.f.: ((1+x)/(1-x))^45.
n*a(n) = 90*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Aug 28 2018
CROSSREFS
Sequence in context: A203733 A200208 A017806 * A017753 A221893 A197194
KEYWORD
nonn,easy
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 25 1998
STATUS
approved