login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214946
Number of squarefree words of length 7 in an (n+1)-ary alphabet.
1
0, 60, 1848, 15960, 80040, 292740, 868560, 2218608, 5062320, 10575180, 20577480, 37769160, 66015768, 110690580, 179077920, 280842720, 428571360, 638388828, 930657240, 1330760760, 1869981960, 2586474660, 3526338288, 4744798800
OFFSET
1,2
COMMENTS
Row 7 of A214943.
LINKS
FORMULA
Empirical: a(n) = n^7 + n^6 - 4*n^5 - 3*n^4 + 5*n^3 + 2*n^2 - 2*n.
Conjectures from Colin Barker, Jul 22 2018: (Start)
G.f.: 12*x^2*(5 + 114*x + 238*x^2 + 62*x^3 + x^4) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=2:
..1....0....1....0....2....2....2....0....1....0....2....2....1....2....2....2
..0....2....2....1....1....0....0....2....0....1....1....0....2....0....1....1
..2....0....1....0....2....2....1....1....1....0....2....1....0....2....2....0
..1....1....0....2....0....1....2....2....2....2....0....0....2....1....0....1
..2....2....1....0....2....2....1....0....1....0....2....2....1....0....1....2
..0....0....2....1....1....0....0....1....0....1....1....1....0....2....2....0
..2....2....1....2....2....1....2....2....1....0....0....0....2....0....1....2
CROSSREFS
Cf. A214943.
Sequence in context: A035725 A035800 A017723 * A058836 A166792 A013925
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jul 30 2012
STATUS
approved