login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214948
a(n) is the sum over all proper integer partitions of n of the previous terms.
2
1, 2, 6, 19, 51, 148, 395, 1095, 2945, 8020, 21597, 58518, 157746, 426250, 1149832, 3104236, 8375167, 22603530, 60988687, 164579663, 444082316, 1198312390, 3233419264, 8724918311, 23542640336, 63526028693, 171413973501, 462531951559, 1248062990751, 3367686427976
OFFSET
1,2
COMMENTS
By "proper integer partition", one means that the case {n} is excluded for having only one part, equal to the number partitioned.
The growth of this function is exponential a(n) -> c * exp(n). [This is not correct, a(n) ~ c * d^n, where d = A246828 = 2.69832910647421123126399... and c = 0.39308289517441096263558422597609193642795355676880812197435683468376... - Vaclav Kotesovec, Dec 27 2023]
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..2320 (first 70 terms from Vincenzo Librandi)
FORMULA
a(n) = sum( sum( a(i), i in p) , p in P*(n)) where P*(n) is the set of all integer partitions of n excluding {n}, p is a partition of P*(n), i is a part of p.
a(n) ~ exp(k) * a(n-1), k = 0.992632731... (conjecture). - Bill McEachen, Dec 26 2023
EXAMPLE
a(4) = (a(3)+a(1))+(a(2)+a(2))+(a(2)+a(1)+a(1))+(a(1)+a(1)+a(1)+a(1)) = (6 + 1) + (2 + 2) + (2 + 2*1) + (4*1) = 7 + 4 + 4 + 4 = 19.
MAPLE
b:= proc(n, i) option remember; `if`(n<2, [1, n], `if`(i<1, 0,
b(n, i-1)+(p-> p+[0, p[1]*a(i)])(b(n-i, min(n-i, i)))))
end:
a:= n-> b(n, n-1)[2]:
seq(a(n), n=1..33); # Alois P. Heinz, Dec 27 2023
MATHEMATICA
Clear[a]; a[1] := 1; a[n_Integer] :=
a[n] = Plus @@ Map[Function[p, Plus @@ Map[a, p]], Drop[IntegerPartitions[n], 1]]; Table[ a[n], {n, 1, 30}]
CROSSREFS
Sequence in context: A034533 A192711 A192712 * A192713 A014559 A192714
KEYWORD
nonn,nice
AUTHOR
Olivier Gérard, Jul 30 2012
STATUS
approved