|
|
A281375
|
|
a(n) = floor(2^(n+1)/n).
|
|
1
|
|
|
4, 4, 5, 8, 12, 21, 36, 64, 113, 204, 372, 682, 1260, 2340, 4369, 8192, 15420, 29127, 55188, 104857, 199728, 381300, 729444, 1398101, 2684354, 5162220, 9942053, 19173961, 37025580, 71582788, 138547332, 268435456, 520602096, 1010580540, 1963413621, 3817748707, 7429132620, 14467258260, 28192605840, 54975581388
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..3329
|
|
FORMULA
|
a(n) = A053639(n) if n is in A000079, otherwise A053639(n)-1.
a(2k-1) = A191636(k) for k > 1.
a(n) = (2^(n+1)-A112983(n))/n.
|
|
MAPLE
|
seq(floor(2^(n+1)/n), n=1..50); # Robert Israel, Jan 20 2017
|
|
PROG
|
(PARI) a(n) = 2^(n+1)\n \\ Felix Fröhlich, Jan 20 2017
|
|
CROSSREFS
|
Cf. A053639, A112983, A191636.
Sequence in context: A198999 A095945 A072231 * A214070 A096641 A155693
Adjacent sequences: A281372 A281373 A281374 * A281376 A281377 A281378
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Robert Israel, Jan 20 2017
|
|
STATUS
|
approved
|
|
|
|