login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280304
a(n) = 3*n*(n^2 + 3*n + 4).
1
0, 24, 84, 198, 384, 660, 1044, 1554, 2208, 3024, 4020, 5214, 6624, 8268, 10164, 12330, 14784, 17544, 20628, 24054, 27840, 32004, 36564, 41538, 46944, 52800, 59124, 65934, 73248, 81084, 89460, 98394, 107904, 118008, 128724, 140070, 152064, 164724, 178068, 192114, 206880, 222384, 238644, 255678, 273504, 292140, 311604, 331914, 353088, 375144, 398100
OFFSET
0,2
COMMENTS
Numbers of unit triangles in a certain structure obtained from A006003.
FORMULA
G.f.: 6*x*(x^2-2*x+4) / (1-x)^4.
a(n) = 6*(A006003(n+1)-1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - Colin Barker, Dec 31 2016
EXAMPLE
a(0) = 6*(1-1) = 0, a(1) = 6*(5-1) = 24, a(2) = 6*(15-1) = 84, a(3) = 6*(34-1) = 198, a(4) = 6*(65-1) = 384.
MAPLE
A280304:=n->3*n*(n^2 + 3*n + 4): seq(A280304(n), n=0..60); # Wesley Ivan Hurt, Dec 31 2016
MATHEMATICA
Table[3 n (n^2 + 3 n + 4), {n, 0, 50}] (* or *)
CoefficientList[Series[6 x (x^2 - 2 x + 4)/(1 - x)^4, {x, 0, 50}], x] (* Michael De Vlieger, Dec 31 2016 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 24, 84, 198}, 60] (* Harvey P. Dale, Feb 08 2023 *)
PROG
(PARI) concat(0, Vec(6*x*(x^2-2*x+4) / (1-x)^4 + O(x^30))) \\ Colin Barker, Dec 31 2016
(Magma) [3*n*(n^2 + 3*n + 4) : n in [0..60]]; // Wesley Ivan Hurt, Dec 31 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luce ETIENNE, Dec 31 2016
STATUS
approved