OFFSET
0,2
COMMENTS
Numbers of unit triangles in a certain structure obtained from A006003.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Luce ETIENNE, Illustration of initial terms
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: 6*x*(x^2-2*x+4) / (1-x)^4.
a(n) = 6*(A006003(n+1)-1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - Colin Barker, Dec 31 2016
EXAMPLE
a(0) = 6*(1-1) = 0, a(1) = 6*(5-1) = 24, a(2) = 6*(15-1) = 84, a(3) = 6*(34-1) = 198, a(4) = 6*(65-1) = 384.
MAPLE
MATHEMATICA
Table[3 n (n^2 + 3 n + 4), {n, 0, 50}] (* or *)
CoefficientList[Series[6 x (x^2 - 2 x + 4)/(1 - x)^4, {x, 0, 50}], x] (* Michael De Vlieger, Dec 31 2016 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 24, 84, 198}, 60] (* Harvey P. Dale, Feb 08 2023 *)
PROG
(PARI) concat(0, Vec(6*x*(x^2-2*x+4) / (1-x)^4 + O(x^30))) \\ Colin Barker, Dec 31 2016
(Magma) [3*n*(n^2 + 3*n + 4) : n in [0..60]]; // Wesley Ivan Hurt, Dec 31 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luce ETIENNE, Dec 31 2016
STATUS
approved