login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228874
a(n) = L(n) * L(n+1) * L(n+2) * L(n+3), the product of four consecutive Lucas numbers, A000032.
2
24, 84, 924, 5544, 40194, 269874, 1864584, 12741324, 87431844, 599001144, 4106310474, 28143249834, 192901471224, 1322153872644, 9062210132844, 62113226746824, 425730613530834, 2918000448971874, 20000274149827944, 137083914357154044, 939587137457703924
OFFSET
0,1
COMMENTS
Mohanty and Mohanty prove in Corollary 2.6 that these numbers are Pythagorean. The number a(n) is primitive Pythagorean if Lucas(n) and Lucas(n+1) have opposite parity. Every third number, starting at a(1) = 84, is not primitive Pythagorean.
Since a(n) = L(n+1)*L(n+2)*(L(n+2)^2-L(n+1)^2), these numbers are in A073120, - Robert Israel, Apr 06 2015
LINKS
Supriya Mohanty and S. P. Mohanty, Pythagorean Numbers, Fibonacci Quarterly 28 (1990), 31-42.
FORMULA
G.f.: 6*(x^4-4*x^3-24*x^2+6*x-4) / ((x-1)*(x^2-7*x+1)*(x^2+3*x+1)). - Colin Barker, Oct 29 2013
From Robert Israel, Apr 06 2015: (Start)
a(n+5) = 5*a(n+4) + 15*a(n+3) - 15*a(n+2) - 5*a(n+1) + a(n).
a(n) = -A228873(n+3) + 4*A228873(n+2) + 24*A228873(n+1) - 6*A228873(n) + 4*A228873(n-1) for n >= 2. (End)
Sum_{n>=0} 1/a(n) = (10 - 3*sqrt(5))/60. - Diego Rattaggi, Aug 16 2021
MAPLE
L:= n -> 2*combinat:-fibonacci(n+1)-combinat:-fibonacci(n):
seq(mul(L(n+i), i=0..3), n=0..30); # Robert Israel, Apr 06 2015
MATHEMATICA
Table[LucasL[n] LucasL[n+1] LucasL[n+2] LucasL[n+3], {n, 0, 25}]
Times@@@Partition[LucasL[Range[0, 30]], 4, 1] (* Harvey P. Dale, Jul 11 2017 *)
PROG
(PARI) Vec(6*(x^4-4*x^3-24*x^2+6*x-4)/((x-1)*(x^2-7*x+1)*(x^2+3*x+1)) + O(x^100)) \\ Colin Barker, Oct 29 2013
CROSSREFS
Cf. A000032 (Lucas numbers), A228873 (similar sequence for Fibonacci numbers).
Cf. A009112 (Pythagorean numbers), A024365, A073120.
Sequence in context: A280304 A168538 A007201 * A211328 A304375 A044211
KEYWORD
nonn,easy,changed
AUTHOR
T. D. Noe, Sep 24 2013
STATUS
approved