OFFSET
1,1
COMMENTS
Symmetry and 2 X 2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j) = (x(i,i)+x(j,j))/2*(-1)^(i-j).
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..90
FORMULA
Empirical: a(n) = 13*a(n-1) - 63*a(n-2) + 130*a(n-3) - 65*a(n-4) - 115*a(n-5) + 69*a(n-6) + 68*a(n-7) + 12*a(n-8).
Empirical g.f.: 2*x*(12 - 113*x + 352*x^2 - 299*x^3 - 321*x^4 + 302*x^5 + 249*x^6 + 42*x^7) / ((1 - 2*x)*(1 - 3*x)*(1 - 2*x - x^2)*(1 - 3*x - x^2)*(1 - 3*x - 2*x^2)). - Colin Barker, Jul 17 2018
EXAMPLE
Some solutions for n=3:
..1.-2.-1..1...-1..1.-1.-1....1..1.-1.-2...-3..1..0..2....2..0..1..0
.-2..3..0..0....1.-1..1..1....1.-3..3..0....1..1.-2..0....0.-2..1.-2
.-1..0.-3..3...-1..1.-1.-1...-1..3.-3..0....0.-2..3.-1....1..1..0..1
..1..0..3.-3...-1..1.-1..3...-2..0..0..3....2..0.-1.-1....0.-2..1.-2
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 07 2012
STATUS
approved