login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211327
Number of (n+1) X (n+1) -3..3 symmetric matrices with every 2 X 2 subblock having sum zero and one, three or four distinct values.
1
15, 33, 69, 143, 293, 595, 1205, 2427, 4885, 9803, 19669, 39403, 78933, 157995, 316245, 632747, 1266005, 2532523, 5066069, 10133163, 20268373, 40538795, 81081685, 162167467, 324343125, 648694443, 1297405269, 2594826923, 5189686613
OFFSET
1,1
COMMENTS
Symmetry and 2 X 2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j) = (x(i,i)+x(j,j))/2*(-1)^(i-j).
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 4*a(n-2) - 2*a(n-3) - 4*a(n-4).
Conjectures from Colin Barker, Jul 17 2018: (Start)
G.f.: x*(15 + 18*x - 24*x^2 - 28*x^3) / ((1 + x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = (-9*2^(n/2) + 29*2^n + 1)/3 for n even.
a(n) = (-3*2^(n/2+3/2) + 29*2^n - 1)/3 for n odd.
(End)
EXAMPLE
Some solutions for n=3:
.-1..2..1..0....0.-1..0.-1...-2..1..0..1....1.-2..1.-2....0..0..0..0
..2.-3..0.-1...-1..2.-1..2....1..0.-1..0...-2..3.-2..3....0..0..0..0
..1..0..3.-2....0.-1..0.-1....0.-1..2.-1....1.-2..1.-2....0..0..0..0
..0.-1.-2..1...-1..2.-1..2....1..0.-1..0...-2..3.-2..3....0..0..0..0
CROSSREFS
Sequence in context: A228321 A277385 A108517 * A222179 A322493 A190052
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 07 2012
STATUS
approved