login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A190052
Least number having exactly two odd prime factors that differ by 2*n^2.
3
15, 33, 115, 185, 159, 553, 303, 393, 835, 2321, 7859, 1465, 3839, 1985, 3199, 5753, 13823, 3265, 3635, 8921, 4435, 2913, 3183, 12793, 37091, 40049, 19123, 4713, 18623, 19921, 21263, 10265, 64003, 67889, 41939, 44353, 8223, 84593, 21343, 9609, 37103, 17665
OFFSET
1,1
LINKS
EXAMPLE
a(11) = 7859 because 7859 = 29 * 271, and 271 - 29 = 242 = 2*11^2.
MAPLE
A190052 := proc(n) local k, p: k:=1: do p:=ithprime(k): if(isprime(p+2*n^2))then return p*(p+2*n^2): fi: k:=k+1: od: end: seq(A190052(n), n=1..50); # Nathaniel Johnston, May 04 2011
MATHEMATICA
f[n_] := Block[{p = 3}, While[q=p+2*n^2; ! PrimeQ[q], p=NextPrime[p]]; p*q]; Table[ f[n], {n, 60}]
CROSSREFS
Sequence in context: A211327 A222179 A322493 * A242243 A219855 A270072
KEYWORD
nonn,easy
AUTHOR
Michel Lagneau, May 04 2011
STATUS
approved