OFFSET
1,1
COMMENTS
Symmetry and 2 X 2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j) = (x(i,i)+x(j,j))/2*(-1)^(i-j).
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..203
FORMULA
Empirical: a(n) = 5*a(n-1) - a(n-2) - 29*a(n-3) + 33*a(n-4) + 50*a(n-5) - 88*a(n-6) - 14*a(n-7) + 73*a(n-8) - 22*a(n-9) - 10*a(n-10) + 4*a(n-11).
Empirical g.f.: x*(25 - 62*x - 141*x^2 + 400*x^3 + 195*x^4 - 855*x^5 + 89*x^6 + 663*x^7 - 248*x^8 - 102*x^9 + 44*x^10) / ((1 - x)*(1 - 2*x)*(1 + x - x^2)*(1 - 2*x - x^2)*(1 - 2*x^2)*(1 - x - 2*x^2 + x^3)). - Colin Barker, Jul 16 2018
EXAMPLE
Some solutions for n=3:
..3.-3..0..0...-1..1..0..1...-1..1.-1..1....2..0..2.-1....0..0..0..1
.-3..3..0..0....1.-1..0.-1....1.-1..1.-1....0.-2..0.-1....0..0..0.-1
..0..0.-3..3....0..0..1..0...-1..1.-1..1....2..0..2.-1....0..0..0..1
..0..0..3.-3....1.-1..0.-1....1.-1..1.-1...-1.-1.-1..0....1.-1..1.-2
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 07 2012
STATUS
approved