login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211326
Number of (n+1) X (n+1) -3..3 symmetric matrices with every 2 X 2 subblock having sum zero and one, two or three distinct values.
1
25, 63, 149, 357, 829, 1941, 4479, 10413, 24087, 56079, 130523, 305431, 715961, 1685595, 3977689, 9418701, 22352933, 53188057, 126803131, 302898825, 724648975, 1736139523, 4164319291, 9999028263, 24029343133, 57789827919, 139068433021
OFFSET
1,1
COMMENTS
Symmetry and 2 X 2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j) = (x(i,i)+x(j,j))/2*(-1)^(i-j).
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) - a(n-2) - 29*a(n-3) + 33*a(n-4) + 50*a(n-5) - 88*a(n-6) - 14*a(n-7) + 73*a(n-8) - 22*a(n-9) - 10*a(n-10) + 4*a(n-11).
Empirical g.f.: x*(25 - 62*x - 141*x^2 + 400*x^3 + 195*x^4 - 855*x^5 + 89*x^6 + 663*x^7 - 248*x^8 - 102*x^9 + 44*x^10) / ((1 - x)*(1 - 2*x)*(1 + x - x^2)*(1 - 2*x - x^2)*(1 - 2*x^2)*(1 - x - 2*x^2 + x^3)). - Colin Barker, Jul 16 2018
EXAMPLE
Some solutions for n=3:
..3.-3..0..0...-1..1..0..1...-1..1.-1..1....2..0..2.-1....0..0..0..1
.-3..3..0..0....1.-1..0.-1....1.-1..1.-1....0.-2..0.-1....0..0..0.-1
..0..0.-3..3....0..0..1..0...-1..1.-1..1....2..0..2.-1....0..0..0..1
..0..0..3.-3....1.-1..0.-1....1.-1..1.-1...-1.-1.-1..0....1.-1..1.-2
CROSSREFS
Sequence in context: A166873 A242317 A251688 * A103645 A061970 A159008
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 07 2012
STATUS
approved