login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211323
Number of (n+1) X (n+1) -3..3 symmetric matrices with every 2 X 2 subblock having sum zero and three distinct values.
1
14, 24, 42, 76, 140, 262, 496, 948, 1826, 3540, 6900, 13510, 26552, 52348, 103474, 204972, 406748, 808326, 1608288, 3203044, 6384194, 12732964, 25408612, 50724486, 101298920, 202355052, 404317266, 807998908, 1614969356, 3228274630
OFFSET
1,1
COMMENTS
Symmetry and 2 X 2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j) = (x(i,i)+x(j,j))/2*(-1)^(i-j).
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) - 4*a(n-2) - a(n-3) + 2*a(n-4).
Empirical g.f.: 2*x*(7 - 16*x + x^2 + 9*x^3) / ((1 - x)*(1 - 2*x)*(1 - x - x^2)). - Colin Barker, Jul 16 2018
EXAMPLE
Some solutions for n=3.
..3..0..3..0....2.-1..0.-2....0.-1.-1..0....1.-2..1.-2....2.-1..0.-1
..0.-3..0.-3...-1..0..1..1...-1..2..0..1...-2..3.-2..3...-1..0..1..0
..3..0..3..0....0..1.-2..0...-1..0.-2..1....1.-2..1.-2....0..1.-2..1
..0.-3..0.-3...-2..1..0..2....0..1..1..0...-2..3.-2..3...-1..0..1..0
CROSSREFS
Sequence in context: A111743 A164399 A164404 * A141838 A140499 A068365
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 07 2012
STATUS
approved