OFFSET
1,1
COMMENTS
Symmetry and 2 X 2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j) = (x(i,i)+x(j,j))/2*(-1)^(i-j).
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
FORMULA
Empirical: a(n) = 4*a(n-1) - 4*a(n-2) - a(n-3) + 2*a(n-4).
Empirical g.f.: 2*x*(7 - 16*x + x^2 + 9*x^3) / ((1 - x)*(1 - 2*x)*(1 - x - x^2)). - Colin Barker, Jul 16 2018
EXAMPLE
Some solutions for n=3.
..3..0..3..0....2.-1..0.-2....0.-1.-1..0....1.-2..1.-2....2.-1..0.-1
..0.-3..0.-3...-1..0..1..1...-1..2..0..1...-2..3.-2..3...-1..0..1..0
..3..0..3..0....0..1.-2..0...-1..0.-2..1....1.-2..1.-2....0..1.-2..1
..0.-3..0.-3...-2..1..0..2....0..1..1..0...-2..3.-2..3...-1..0..1..0
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 07 2012
STATUS
approved