login
A140499
a(n) = p^2 - sum of digits of p^p, where p = prime(n).
1
0, 0, 14, 24, 80, 111, 191, 234, 383, 674, 777, 1098, 1373, 1536, 1835, 2459, 3011, 3237, 3963, 4403, 4725, 5496, 6182, 7148, 8556, 9305, 9741, 10442, 10935, 11786, 14940, 16034, 17504, 17994, 20741, 21381, 23097, 24939, 26141, 28133, 30188
OFFSET
1,3
LINKS
MAPLE
sd:=proc(n) options operator, arrow: add(convert(n, base, 10)[j], j=1..nops(convert(n, base, 10))) end proc: a:=proc(n) options operator, arrow: ithprime(n)^2-sd(ithprime(n)^ithprime(n)) end proc: seq(a(n), n=1..45); # Emeric Deutsch, Aug 10 2008
MATHEMATICA
Table[#^2 - Total@ IntegerDigits[#^#] &@ Prime@ n, {n, 41}] (* Michael De Vlieger, Oct 11 2017 *)
PROG
(PARI) a(n) = my(p=prime(n)); p^2 - sumdigits(p^p); \\ Michel Marcus, Mar 18 2018
CROSSREFS
Sequence in context: A164404 A211323 A141838 * A068365 A154038 A366960
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Aug 10 2008
Name edited by Robert Israel, Oct 11 2017
STATUS
approved