login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140499
a(n) = p^2 - sum of digits of p^p, where p = prime(n).
1
0, 0, 14, 24, 80, 111, 191, 234, 383, 674, 777, 1098, 1373, 1536, 1835, 2459, 3011, 3237, 3963, 4403, 4725, 5496, 6182, 7148, 8556, 9305, 9741, 10442, 10935, 11786, 14940, 16034, 17504, 17994, 20741, 21381, 23097, 24939, 26141, 28133, 30188
OFFSET
1,3
LINKS
MAPLE
sd:=proc(n) options operator, arrow: add(convert(n, base, 10)[j], j=1..nops(convert(n, base, 10))) end proc: a:=proc(n) options operator, arrow: ithprime(n)^2-sd(ithprime(n)^ithprime(n)) end proc: seq(a(n), n=1..45); # Emeric Deutsch, Aug 10 2008
MATHEMATICA
Table[#^2 - Total@ IntegerDigits[#^#] &@ Prime@ n, {n, 41}] (* Michael De Vlieger, Oct 11 2017 *)
PROG
(PARI) a(n) = my(p=prime(n)); p^2 - sumdigits(p^p); \\ Michel Marcus, Mar 18 2018
CROSSREFS
Sequence in context: A164404 A211323 A141838 * A068365 A154038 A366960
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Aug 10 2008
Name edited by Robert Israel, Oct 11 2017
STATUS
approved