OFFSET
-1,2
COMMENTS
In general, a sequence of the form a(n) = Sum_{k=1..n} (k+x+3)!/(k+x)! will have a closed form of n/4 * (n + 5 + 2*x)*(n^2 + 5*n + 2*x*n + 10 + 2*x^2 + 10*x). - Gary Detlefs, Aug 10 2010
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
From R. J. Mathar, Mar 21 2010: (Start)
a(n) = 6*A063258(n).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: 6*(x-2)*(x^2 - 2*x + 2)/(x-1)^5. (End)
From Gary Detlefs, Aug 10 2010: (Start)
a(n) = Sum_{k=1..n} (k+3)*(k+2)*(k+1), with offset 0.
a(n) = (n/4)*(n+5)*(n^2 + 5*n + 10), with offset 0. (End)
E.g.f.: (1/4)*(96 + 240*x + 120*x^2 + 20*x^3 + x^4)*exp(x). - G. C. Greubel, Jul 25 2016
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 24, 84, 204, 414}, 25] (* G. C. Greubel, Jul 25 2016 *)
Table[1/4 (n+6)(n+1)(n^2+7n+16), {n, -1, 40}] (* Harvey P. Dale, Jul 07 2019 *)
PROG
(PARI) a(n) = (n+6)*(n+1)*(n^2 + 7*n + 16)/4; \\ Michel Marcus, Jan 10 2015
(Magma) [(n+6)*(n+1)*(n^2+7*n+16)/4: n in [-1..35]]; // Vincenzo Librandi, Jul 26 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kristo Jorgenson (kristoj(AT)me.com), Nov 29 2009
EXTENSIONS
Edited by N. J. A. Sloane, Nov 29 2009
STATUS
approved