login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168538
a(n) = (n+6)*(n+1)*(n^2 + 7*n + 16)/4.
1
0, 24, 84, 204, 414, 750, 1254, 1974, 2964, 4284, 6000, 8184, 10914, 14274, 18354, 23250, 29064, 35904, 43884, 53124, 63750, 75894, 89694, 105294, 122844, 142500, 164424, 188784, 215754, 245514, 278250, 314154, 353424, 396264, 442884, 493500, 548334
OFFSET
-1,2
COMMENTS
In general, a sequence of the form a(n) = Sum_{k=1..n} (k+x+3)!/(k+x)! will have a closed form of n/4 * (n + 5 + 2*x)*(n^2 + 5*n + 2*x*n + 10 + 2*x^2 + 10*x). - Gary Detlefs, Aug 10 2010
FORMULA
From R. J. Mathar, Mar 21 2010: (Start)
a(n) = 6*A063258(n).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: 6*(x-2)*(x^2 - 2*x + 2)/(x-1)^5. (End)
From Gary Detlefs, Aug 10 2010: (Start)
a(n) = Sum_{k=1..n} (k+3)*(k+2)*(k+1), with offset 0.
a(n) = (n/4)*(n+5)*(n^2 + 5*n + 10), with offset 0. (End)
E.g.f.: (1/4)*(96 + 240*x + 120*x^2 + 20*x^3 + x^4)*exp(x). - G. C. Greubel, Jul 25 2016
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 24, 84, 204, 414}, 25] (* G. C. Greubel, Jul 25 2016 *)
Table[1/4 (n+6)(n+1)(n^2+7n+16), {n, -1, 40}] (* Harvey P. Dale, Jul 07 2019 *)
PROG
(PARI) a(n) = (n+6)*(n+1)*(n^2 + 7*n + 16)/4; \\ Michel Marcus, Jan 10 2015
(Magma) [(n+6)*(n+1)*(n^2+7*n+16)/4: n in [-1..35]]; // Vincenzo Librandi, Jul 26 2016
CROSSREFS
Cf. A063258.
Sequence in context: A289155 A101861 A280304 * A007201 A228874 A211328
KEYWORD
nonn,easy
AUTHOR
Kristo Jorgenson (kristoj(AT)me.com), Nov 29 2009
EXTENSIONS
Edited by N. J. A. Sloane, Nov 29 2009
STATUS
approved