login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3*n*(n^2 + 3*n + 4).
1

%I #26 Feb 08 2023 18:36:57

%S 0,24,84,198,384,660,1044,1554,2208,3024,4020,5214,6624,8268,10164,

%T 12330,14784,17544,20628,24054,27840,32004,36564,41538,46944,52800,

%U 59124,65934,73248,81084,89460,98394,107904,118008,128724,140070,152064,164724,178068,192114,206880,222384,238644,255678,273504,292140,311604,331914,353088,375144,398100

%N a(n) = 3*n*(n^2 + 3*n + 4).

%C Numbers of unit triangles in a certain structure obtained from A006003.

%H Colin Barker, <a href="/A280304/b280304.txt">Table of n, a(n) for n = 0..1000</a>

%H Luce ETIENNE, <a href="/A280304/a280304.pdf">Illustration of initial terms</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F G.f.: 6*x*(x^2-2*x+4) / (1-x)^4.

%F a(n) = 6*(A006003(n+1)-1).

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - _Colin Barker_, Dec 31 2016

%e a(0) = 6*(1-1) = 0, a(1) = 6*(5-1) = 24, a(2) = 6*(15-1) = 84, a(3) = 6*(34-1) = 198, a(4) = 6*(65-1) = 384.

%p A280304:=n->3*n*(n^2 + 3*n + 4): seq(A280304(n), n=0..60); # _Wesley Ivan Hurt_, Dec 31 2016

%t Table[3 n (n^2 + 3 n + 4), {n, 0, 50}] (* or *)

%t CoefficientList[Series[6 x (x^2 - 2 x + 4)/(1 - x)^4, {x, 0, 50}], x] (* _Michael De Vlieger_, Dec 31 2016 *)

%t LinearRecurrence[{4,-6,4,-1},{0,24,84,198},60] (* _Harvey P. Dale_, Feb 08 2023 *)

%o (PARI) concat(0, Vec(6*x*(x^2-2*x+4) / (1-x)^4 + O(x^30))) \\ _Colin Barker_, Dec 31 2016

%o (Magma) [3*n*(n^2 + 3*n + 4) : n in [0..60]]; // _Wesley Ivan Hurt_, Dec 31 2016

%Y Cf. A003215, A005448, A006003, A033428, A213389, A269064.

%K nonn,easy

%O 0,2

%A _Luce ETIENNE_, Dec 31 2016