The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A278843 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = Catalan(i+j). 8
 1, 2, 53, 19148, 97432285, 7146659536022, 7683122105385590481, 122557371932066196769721048, 29280740446653388021872592300048913, 105552099397122165176384278493772205485181002, 5775235099464970103806328103231969172586171168151193533 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..10. Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, Catalan determinants-a combinatorial approach, Congressus Numerantium 200, 27-34 (2010).  On ResearchGate. M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000). Wikipedia, Hankel matrix. FORMULA Det(M(n)) = n + 1 (see Mays and Wojciechowski, 2000). - Stefano Spezia, Dec 08 2023 EXAMPLE From Stefano Spezia, Dec 08 2023: (Start) a(4) = 97432285: 2, 5, 14, 42; 5, 14, 42, 132; 14, 42, 132, 429; 42, 132, 429, 1430. (End) MATHEMATICA Flatten[{1, Table[Permanent[Table[CatalanNumber[i+j], {i, 1, n}, {j, 1, n}]], {n, 1, 14}]}] PROG (PARI) C(n) = binomial(2*n, n)/(n+1); \\ A000108 a(n) = matpermanent(matrix(n, n, i, j, C(i+j))); \\ Michel Marcus, Dec 11 2023 CROSSREFS Cf. A000108, A277829, A278770, A278844. Cf. A368012, A368019, A368021, A368022, A368023, A368024, A368025. Column k=2 of A368026. Sequence in context: A265443 A234603 A087865 * A083471 A078691 A280754 Adjacent sequences: A278840 A278841 A278842 * A278844 A278845 A278846 KEYWORD nonn AUTHOR Vaclav Kotesovec, Nov 29 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 10 02:40 EDT 2024. Contains 375769 sequences. (Running on oeis4.)