|
|
A278843
|
|
a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = Catalan(i+j).
|
|
8
|
|
|
1, 2, 53, 19148, 97432285, 7146659536022, 7683122105385590481, 122557371932066196769721048, 29280740446653388021872592300048913, 105552099397122165176384278493772205485181002, 5775235099464970103806328103231969172586171168151193533
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
Det(M(n)) = n + 1 (see Mays and Wojciechowski, 2000). - Stefano Spezia, Dec 08 2023
|
|
EXAMPLE
|
a(4) = 97432285:
2, 5, 14, 42;
5, 14, 42, 132;
14, 42, 132, 429;
42, 132, 429, 1430.
(End)
|
|
MATHEMATICA
|
Flatten[{1, Table[Permanent[Table[CatalanNumber[i+j], {i, 1, n}, {j, 1, n}]], {n, 1, 14}]}]
|
|
PROG
|
(PARI) C(n) = binomial(2*n, n)/(n+1); \\ A000108
a(n) = matpermanent(matrix(n, n, i, j, C(i+j))); \\ Michel Marcus, Dec 11 2023
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|