login
A368021
a(n) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+3) with i,j = 0, ..., n-1.
7
1, 5, 406, 490614, 8755482505, 2318987094804471, 9179129956137993425772, 546580120389987275414413168012, 492460174883711250780962744103403975159, 6747075036368337341936435881321217868978170152215, 1411689504898999110533224343869931312130954127737962059963934
OFFSET
0,2
LINKS
Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, Catalan determinants-a combinatorial approach, Congressus Numerantium 200, 27-34 (2010). On ResearchGate.
M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000).
Wikipedia, Hankel matrix.
FORMULA
Det(M(n)) = A000330(n+1) (see Mays and Wojciechowski, 2000).
EXAMPLE
a(4) = 8755482505:
5, 14, 42, 132;
14, 42, 132, 429;
42, 132, 429, 1430;
132, 429, 1430, 4862.
MATHEMATICA
Join[{1}, Table[Permanent[Table[CatalanNumber[i+j+3], {i, 0, n-1}, {j, 0, n-1}]], {n, 10}]]
PROG
(PARI) C(n) = binomial(2*n, n)/(n+1); \\ A000108
a(n) = matpermanent(matrix(n, n, i, j, C(i+j+1))); \\ Michel Marcus, Dec 11 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Stefano Spezia, Dec 08 2023
STATUS
approved