login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368021
a(n) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+3) with i,j = 0, ..., n-1.
7
1, 5, 406, 490614, 8755482505, 2318987094804471, 9179129956137993425772, 546580120389987275414413168012, 492460174883711250780962744103403975159, 6747075036368337341936435881321217868978170152215, 1411689504898999110533224343869931312130954127737962059963934
OFFSET
0,2
LINKS
Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, Catalan determinants-a combinatorial approach, Congressus Numerantium 200, 27-34 (2010). On ResearchGate.
M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000).
Wikipedia, Hankel matrix.
FORMULA
Det(M(n)) = A000330(n+1) (see Mays and Wojciechowski, 2000).
EXAMPLE
a(4) = 8755482505:
5, 14, 42, 132;
14, 42, 132, 429;
42, 132, 429, 1430;
132, 429, 1430, 4862.
MATHEMATICA
Join[{1}, Table[Permanent[Table[CatalanNumber[i+j+3], {i, 0, n-1}, {j, 0, n-1}]], {n, 10}]]
PROG
(PARI) C(n) = binomial(2*n, n)/(n+1); \\ A000108
a(n) = matpermanent(matrix(n, n, i, j, C(i+j+1))); \\ Michel Marcus, Dec 11 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Stefano Spezia, Dec 08 2023
STATUS
approved