login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


A221047
The hyper-Wiener index of the Bethe cactus lattice graph E_n defined pictorially in the Hosoya - Balasubramanian reference.
2
5, 406, 11458, 221572, 3519703, 49623850, 646314724, 7958362600, 93998378377, 1075239211294, 11991495728998, 131012033254444, 1407240588517147, 14901371119404658, 155885324936843080, 1613748962415344464, 16554187503550561933, 168462466356459175462
OFFSET
1,1
LINKS
K. Balasubramanian, Recent developments in tree-pruning methods and polynomials for cactus graphs and trees, J. Math. Chemistry, 4 (1990) 89-102.
H. Hosoya and K. Balasubramanian, Exact dimer statistics and characteristic polynomials of cacti lattices, Theor. Chim. Acta 76 (1989) 315-329. Also on ResearchGate.
Index entries for linear recurrences with constant coefficients, signature (37, -549, 4185, -17523, 40095, -45927, 19683).
FORMULA
a(n) = -(1/8)+3^n*(2*n^2/3 - 25*n/12-43/4)+3^(2n)*(4*n^2-41*n/4+87/8).
G.f.: -x*(486*x^4-405*x^3-819*x^2+221*x+5) / ((x-1)*(3*x-1)^3*(9*x-1)^3). [Colin Barker, Jan 01 2013]
MAPLE
a := proc (n) options operator, arrow: -1/8+3^n*((2/3)*n^2-(25/12)*n-43/4)+3^(2*n)*(4*n^2-(41/4)*n+87/8) end proc: seq(a(n), n = 1 .. 18);
MATHEMATICA
LinearRecurrence[{37, -549, 4185, -17523, 40095, -45927, 19683}, {5, 406, 11458, 221572, 3519703, 49623850, 646314724}, 20] (* Harvey P. Dale, May 21 2020 *)
CROSSREFS
Cf. A221046.
Sequence in context: A198538 A198535 A128866 * A368021 A075769 A046274
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Dec 30 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 00:39 EDT 2024. Contains 376015 sequences. (Running on oeis4.)