login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A221047 The hyper-Wiener index of the Bethe cactus lattice graph E_n defined pictorially in the Hosoya - Balasubramanian reference. 1
5, 406, 11458, 221572, 3519703, 49623850, 646314724, 7958362600, 93998378377, 1075239211294, 11991495728998, 131012033254444, 1407240588517147, 14901371119404658, 155885324936843080, 1613748962415344464, 16554187503550561933, 168462466356459175462 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

K. Balasubramanian, Recent developments in tree-pruning methods and polynomials for cactus graphs and trees, J. Math. Chemistry, 4 (1990) 89-102.

H. Hosoya, K. Balasubramanian, Exact dimer statistics and characteristic polynomials of cacti lattices, Theor. Chim. Acta 76 (1989) 315-329.

LINKS

Table of n, a(n) for n=1..18.

Index entries for linear recurrences with constant coefficients, signature (37,-549,4185,-17523,40095,-45927,19683).

FORMULA

a(n) = -(1/8)+3^n*(2*n^2/3 - 25*n/12-43/4)+3^(2n)*(4*n^2-41*n/4+87/8).

G.f.: -x*(486*x^4-405*x^3-819*x^2+221*x+5) / ((x-1)*(3*x-1)^3*(9*x-1)^3). [Colin Barker, Jan 01 2013]

MAPLE

a := proc (n) options operator, arrow: -1/8+3^n*((2/3)*n^2-(25/12)*n-43/4)+3^(2*n)*(4*n^2-(41/4)*n+87/8) end proc: seq(a(n), n = 1 .. 18);

MATHEMATICA

LinearRecurrence[{37, -549, 4185, -17523, 40095, -45927, 19683}, {5, 406, 11458, 221572, 3519703, 49623850, 646314724}, 20] (* Harvey P. Dale, May 21 2020 *)

CROSSREFS

Cf. A221046

Sequence in context: A198538 A198535 A128866 * A075769 A046274 A221700

Adjacent sequences:  A221044 A221045 A221046 * A221048 A221049 A221050

KEYWORD

nonn,easy

AUTHOR

Emeric Deutsch, Dec 30 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 11:16 EDT 2022. Contains 353871 sequences. (Running on oeis4.)