Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Dec 23 2023 12:56:27
%S 1,2,53,19148,97432285,7146659536022,7683122105385590481,
%T 122557371932066196769721048,29280740446653388021872592300048913,
%U 105552099397122165176384278493772205485181002,5775235099464970103806328103231969172586171168151193533
%N a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = Catalan(i+j).
%H Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, <a href="https://combinatorialpress.com/cn/arch/vol200/">Catalan determinants-a combinatorial approach</a>, Congressus Numerantium 200, 27-34 (2010). <a href="https://www.researchgate.net/publication/249812385_Catalan_determinants-a_combinatorial_approach">On ResearchGate</a>.
%H M. E. Mays and Jerzy Wojciechowski, <a href="https://doi.org/10.1016/S0012-365X(99)00140-5">A determinant property of Catalan numbers</a>. Discrete Math. 211, No. 1-3, 125-133 (2000).
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Hankel_matrix">Hankel matrix</a>.
%F Det(M(n)) = n + 1 (see Mays and Wojciechowski, 2000). - _Stefano Spezia_, Dec 08 2023
%e From _Stefano Spezia_, Dec 08 2023: (Start)
%e a(4) = 97432285:
%e 2, 5, 14, 42;
%e 5, 14, 42, 132;
%e 14, 42, 132, 429;
%e 42, 132, 429, 1430.
%e (End)
%t Flatten[{1, Table[Permanent[Table[CatalanNumber[i+j], {i, 1, n}, {j, 1, n}]], {n, 1, 14}]}]
%o (PARI) C(n) = binomial(2*n, n)/(n+1); \\ A000108
%o a(n) = matpermanent(matrix(n, n, i, j, C(i+j))); \\ _Michel Marcus_, Dec 11 2023
%Y Cf. A000108, A277829, A278770, A278844.
%Y Cf. A368012, A368019, A368021, A368022, A368023, A368024, A368025.
%Y Column k=2 of A368026.
%K nonn
%O 0,2
%A _Vaclav Kotesovec_, Nov 29 2016