login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277790
Numerator of sum of reciprocals of proper divisors of n.
4
0, 1, 1, 3, 1, 11, 1, 7, 4, 17, 1, 9, 1, 23, 23, 15, 1, 19, 1, 41, 31, 35, 1, 59, 6, 41, 13, 55, 1, 71, 1, 31, 47, 53, 47, 5, 1, 59, 55, 89, 1, 95, 1, 83, 77, 71, 1, 41, 8, 46, 71, 97, 1, 119, 71, 17, 79, 89, 1, 167, 1, 95, 103, 63, 83, 13, 1, 125, 95, 143, 1, 97, 1, 113, 41, 139, 95, 167, 1, 37
OFFSET
1,4
FORMULA
a(n) = numerator(Sum_{d|n, d<n} 1/d).
a(n) = numerator((sigma_1(n)-1)/n).
a(p) = 1 when p is prime.
a(p^k) = (p^k - 1)/(p - 1) when p is prime.
Dirichlet g.f.: (zeta(s) - 1)*zeta(s+1) (for fraction Sum_{d|n, d<n} 1/d).
EXAMPLE
a(4) = 3 because 4 has 3 divisors {1,2,4} therefore 2 proper divisors {1,2} and 1/1 + 1/2 = 3/2.
0, 1, 1, 3/2, 1, 11/6, 1, 7/4, 4/3, 17/10, 1, 9/4, 1, 23/14, 23/15, 15/8, 1, 19/9, 1, 41/20, 31/21, 35/22, 1, 59/24, 6/5, 41/26, 13/9, 55/28, ...
MAPLE
with(numtheory): P:=proc(n) local a, k; a:=divisors(n) minus {n};
numer(add(1/a[k], k=1..nops(a))); end: seq(P(i), i=1..80); # Paolo P. Lava, Oct 17 2018
MATHEMATICA
Table[Numerator[DivisorSigma[-1, n] - 1/n], {n, 1, 80}]
Table[Numerator[(DivisorSigma[1, n] - 1)/n], {n, 1, 80}]
PROG
(PARI) a(n) = numerator((sigma(n)-1)/n); \\ Michel Marcus, Nov 01 2016
(Python)
from math import gcd
from sympy import divisor_sigma
def A277790(n): return (m:=divisor_sigma(n)-1)//gcd(n, m) # Chai Wah Wu, Jul 18 2022
CROSSREFS
Cf. A000203, A001065, A017665, A017666, A277791 (denominators).
Sequence in context: A276391 A119632 A201131 * A360121 A339175 A134761
KEYWORD
nonn,frac,changed
AUTHOR
Ilya Gutkovskiy, Oct 31 2016
STATUS
approved