login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277780 a(n) is the least k > n such that n*k^2 is a cube. 2
8, 16, 24, 32, 40, 48, 56, 27, 72, 80, 88, 96, 104, 112, 120, 54, 136, 144, 152, 160, 168, 176, 184, 81, 200, 208, 64, 224, 232, 240, 248, 108, 264, 272, 280, 288, 296, 304, 312, 135, 328, 336, 344, 352, 360, 368, 376, 162, 392, 400, 408, 416, 424, 128, 440 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) is bounded above by 8*n (A008590) because n*(8*n)^2 = (4*n)^3.

If and only if n is cubefree, a(n) = 8n. - David A. Corneth, Nov 01 2016

Theorem: If n = q*m^3 with q cubefree then k = q*(m+1)^3. - Hartmut F. W. Hoft, Nov 02 2016

Proof: let q have u distinct prime divisors p_i. Then q = Product_{i=1..u}(p_i^e_i) where e_i > 0 since p_i|q and e_i < 3 since q is cubefree. Therefore, e_i = 1 or e_i = 2. This yields q|k, i.e., q*t = k. Now for n*k^2 = q*m^3*q^2*t^2 = (q*m)^3 * t^2 to be a cube, t must be a cube. Now, k > n, so q*t/(q*m^3) = t/m^3. The least cube > m^3 is (m+1)^3 so k = q*(m+1)^3 which completes the proof. - David A. Corneth, Nov 03 2016

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = A050985(n) * A000578(1+A048766(A008834(n))). [Formula given in comments expressed with A-numbers] - Antti Karttunen, Nov 02 2016.

EXAMPLE

a(24) = 81  because 24 *  81^2 =  54^3;

a(25) = 200 because 25 * 200^2 = 100^3;

a(26) = 208 because 26 * 208^2 = 104^3;

a(27) = 64  because 27 *  64^2 =  48^3.

The cubefree part of 144 is 18. The cubefull part of 144 is 8 = 2^3. Therefore, a(144) = 18 * 3^3 = 486. - David A. Corneth, Nov 01 2016

MATHEMATICA

Table[k = n + 1; While[! IntegerQ[(n k^2)^(1/3)], k++]; k, {n, 55}] (* Michael De Vlieger, Nov 04 2016 *)

PROG

(PARI) a(n) = {my(k = n+1); while (!ispower(n*k^2, 3), k++); k; } \\ Michel Marcus, Oct 31 2016

(PARI) a(n) = {my(f = factor(n)); f[, 2] = f[, 2]%3; f=factorback(f); n = sqrtnint(n/f, 3); (n+1)^3 * f} \\ David A. Corneth, Nov 01 2016

CROSSREFS

Cf. A000578, A008590, A008834, A048766, A050985, A072905, A254767, A277781.

Sequence in context: A037989 A044848 A282148 * A044893 A185359 A022144

Adjacent sequences:  A277777 A277778 A277779 * A277781 A277782 A277783

KEYWORD

nonn,easy

AUTHOR

Peter Kagey, Oct 30 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 16:00 EDT 2021. Contains 343652 sequences. (Running on oeis4.)