|
|
A277584
|
|
a(n) = binomial(3n-1, n-1)^2.
|
|
1
|
|
|
0, 1, 25, 784, 27225, 1002001, 38291344, 1502337600, 60101954649, 2440703175625, 100300325150025, 4161829109817600, 174077451630810000, 7330421677037621904, 310467090932230849600, 13214837914326197526784, 564927069263895118093401
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..605
|
|
FORMULA
|
a(n) = A025174(n)^2.
a(n) = A188662(n)/9 for n > 0.
Let the number of multisets of length k on n symbols be denoted by ((n, k)) = binomial(n+k-1, k).
a(n) = (Sum_{k=0..n} binomial(n, k)^2 * ((2*n, 2*n - k)))/5 for n > 0.
|
|
MATHEMATICA
|
Table[Boole[n > 0] Binomial[3 n - 1, n - 1]^2, {n, 0, 16}] (* Michael De Vlieger, Oct 26 2016 *)
|
|
PROG
|
(PARI) a(n) = binomial(3*n-1, n-1)^2; \\ Michel Marcus, Oct 22 2016
(Magma) [Binomial(3*n-1, n-1)^2: n in [0..20]]; // Vincenzo Librandi, Oct 23 2016
|
|
CROSSREFS
|
Cf. A025174, A060150, A188662.
Sequence in context: A286439 A123835 A012835 * A223228 A132540 A337247
Adjacent sequences: A277581 A277582 A277583 * A277585 A277586 A277587
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Seiichi Manyama, Oct 22 2016
|
|
STATUS
|
approved
|
|
|
|