login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277582
Expansion of f(-x^5) * f(-x^7) - x * f(-x) * f(-x^35) in powers of q where f() is a Ramanujan theta function.
2
1, -1, 1, 1, 0, -1, -1, -1, -1, 0, -1, 0, 1, 1, -1, 0, 1, 1, 0, 1, 0, 0, 0, -1, 1, 1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 2, 2, -1, -1, -1, -1, 2, -1, 1, 0, -1, 0, 0, -1, 0, 0, -1, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, -1, -1, 2, -1, 0, 0, 2
OFFSET
0,36
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1) * (eta(q^10) * eta(q^14) - eta(q^2) * eta(q^70)) in powers of q^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (140 t)) = 140^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
EXAMPLE
G.f. = 1 - x + x^2 + x^3 - x^5 - x^6 - x^7 - x^8 - x^10 + x^12 + x^13 + ...
G.f. = q - q^3 + q^5 + q^7 - q^11 - q^13 - q^15 - q^17 - q^21 + q^25 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^5] QPochhammer[ x^7] - x QPochhammer[ x] QPochhammer[ x^35], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^5 + A) * eta(x^7 + A) - x * eta(x + A) * eta(x^35 + A), n))};
(PARI) {a(n) = my(j=24*n+12, n1, n2, t1, t2); if( n<0, 0, n1 = sqrtint(j\7); n2 = sqrtint(j\35); sum(k = (-n1+4)\6, (n1-1)\6, if( (t1 = j-7*(6*k+1)^2)%5 ==0 && issquare( t1/5, &t2), if( t2%6 == 5, t2=-t2); m = (t2-1)/6; (-1)^(k+m))) - sum(k = (-n2+4)\6, (n2-1)\6, t1 = j-35*(6*k+1)^2; if( issquare( t1, &t2), if( t2%6 == 5, t2=-t2); m = (t2-1)/6; (-1)^(k+m))))};
CROSSREFS
Cf. A030216.
Sequence in context: A330231 A323017 A273638 * A037803 A184318 A030410
KEYWORD
sign
AUTHOR
Michael Somos, Oct 21 2016
STATUS
approved