login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277581
Goldbach's problem extended to squares of nonnegative differences of primes: smallest integer >= ((A112823(n) - A234345(n))^2)/n for n >= 2.
1
0, 0, 1, 0, 1, 0, 5, 2, 4, 0, 1, 0, 3, 2, 3, 0, 1, 0, 2, 1, 15, 0, 5, 6, 2, 3, 12, 0, 1, 0, 11, 2, 2, 5, 3, 0, 9, 1, 1, 0, 1, 0, 1, 1, 20, 0, 3, 12, 1, 6, 7, 0, 4, 11, 1, 2, 16, 0, 1, 0, 6, 2, 1, 3, 2, 0, 14, 1, 1, 0, 1, 0, 13, 1, 1, 2, 2, 0, 5, 1, 11, 0, 2, 7, 1, 10, 4, 0
OFFSET
2,7
COMMENTS
Where A112823(n) + A234345(n) = 2n and A112823(n) <= A234345(n) (or nonnegative differences of primes). If n is prime, then a(n) = 0.
Conjecture: 1 <= a(n) <= m for all n, where m is largest value of a(n), i.e., the sequence of records in a(n) {1, 5, 15, 20, ..., m} is finite.
EXAMPLE
a(8) = 5 because ((A112823(8) - A234345(8))^2)/8 = ((5 - 11)^2)/8 < 5, where 5(prime) + 11(prime) = 2*8;
a(9) = 2 because ((A112823(9) - A234345(9))^2)/9 = ((7 - 11)^2)/9 < 2, where 7(prime) + 11(prime) = 2*9;
a(10) = 4 because ((A112823(10) - A234345(10))^2)/10 = ((7 - 13)^2)/10 < 4, where 7(prime) + 13(prime) = 2*10.
CROSSREFS
Cf. A112823 (2 together with A002374), A234345, A277583 (Goldbach's problem extended to squares of prime gaps >= 2).
Sequence in context: A193797 A350518 A214662 * A307381 A256167 A207528
KEYWORD
nonn
AUTHOR
STATUS
approved