Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 08 2022 08:46:17
%S 0,1,25,784,27225,1002001,38291344,1502337600,60101954649,
%T 2440703175625,100300325150025,4161829109817600,174077451630810000,
%U 7330421677037621904,310467090932230849600,13214837914326197526784,564927069263895118093401
%N a(n) = binomial(3n-1, n-1)^2.
%H Seiichi Manyama, <a href="/A277584/b277584.txt">Table of n, a(n) for n = 0..605</a>
%F a(n) = A025174(n)^2.
%F a(n) = A188662(n)/9 for n > 0.
%F Let the number of multisets of length k on n symbols be denoted by ((n, k)) = binomial(n+k-1, k).
%F a(n) = (Sum_{k=0..n} binomial(n, k)^2 * ((2*n, 2*n - k)))/5 for n > 0.
%t Table[Boole[n > 0] Binomial[3 n - 1, n - 1]^2, {n, 0, 16}] (* _Michael De Vlieger_, Oct 26 2016 *)
%o (PARI) a(n) = binomial(3*n-1, n-1)^2; \\ _Michel Marcus_, Oct 22 2016
%o (Magma) [Binomial(3*n-1, n-1)^2: n in [0..20]]; // _Vincenzo Librandi_, Oct 23 2016
%Y Cf. A025174, A060150, A188662.
%K nonn
%O 0,3
%A _Seiichi Manyama_, Oct 22 2016