login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277586
Numerator of Sum_{k=0..n} (2^k * (k!)^2)/(2k + 1)!.
2
1, 4, 22, 32, 488, 5408, 70544, 23552, 1202048, 22846976, 22850816, 40431616, 2628156416, 1576923136, 228655904768, 416962576384, 2362792902656, 7088385949696, 262270410489856, 52454094798848, 2150618140770304, 92476585387491328, 462382939977023488
OFFSET
0,2
COMMENTS
Let b(n) = Sum_{k=0..n} (2^k * (k!)^2)/(2k + 1)!. Then:
b(n) = 1 + 1/3 * (1 + 2/5 * (1 + … (1 + n/(2n+1)))) = A087547(n+1)/A001147(n+1).
lim n -> infinity b(n) = Pi/2.
LINKS
Eric Weisstein's World of Mathematics, Pi Formulas
FORMULA
a(n) = numerator(Sum_{k=0..n} (2^k)/A002457(k)).
EXAMPLE
b(0) = 1, so a(0) = 1.
b(1) = 4/3, so a(1) = 4.
b(2) = 22/15, so a(2) = 22.
b(3) = 32/21, so a(3) = 32.
b(4) = 488/315, so a(4) = 488.
PROG
(PARI) a(n) = numerator(sum(k=0, n, (2^k * (k!)^2)/(2*k + 1)!)); \\ Michel Marcus, Oct 22 2016
CROSSREFS
Cf. A001147, A002457, A019669 (decimal expansion of Pi/2), A087547, A277585 (denominators).
Sequence in context: A036920 A036921 A083510 * A078647 A031108 A350521
KEYWORD
nonn,frac
AUTHOR
Seiichi Manyama, Oct 22 2016
STATUS
approved