login
A350521
a(n) = 18*n + 4.
1
4, 22, 40, 58, 76, 94, 112, 130, 148, 166, 184, 202, 220, 238, 256, 274, 292, 310, 328, 346, 364, 382, 400, 418, 436, 454, 472, 490, 508, 526, 544, 562, 580, 598, 616, 634, 652, 670, 688, 706, 724, 742, 760, 778, 796, 814, 832, 850, 868, 886, 904, 922, 940, 958
OFFSET
0,1
COMMENTS
Second column of A006370 (the Collatz or 3x+1 map) when it is interpreted as a rectangular array with six columns read by rows.
FORMULA
a(n) = A242215(n) - 1.
a(n) = A298035(n+1) + 1.
From Elmo R. Oliveira, Apr 08 2024: (Start)
G.f.: 2*(2+7*x)/(1-x)^2.
E.g.f.: 2*exp(x)*(2 + 9*x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 2*A017185(n) = A006370(A016921(n)). (End)
MAPLE
seq(18*n+4, n=0..53);
MATHEMATICA
Table[18n+4, {n, 0, 53}]
PROG
(PARI) a(n)=18*n+4
(Magma) [18*n+4: n in [0..53]];
(Maxima) makelist(18*n+4, n, 0, 53);
(GAP) List([0..53], n-> 18*n+4)
(Python) [18*n+4 for n in range(53)]
CROSSREFS
Bisection of A017209.
Sequence in context: A277586 A078647 A031108 * A163484 A326737 A297434
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Jan 03 2022
STATUS
approved