The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275460 G.f.: 3F2([2/9, 4/9, 7/9], [1/3, 1], 729 x). 1
 1, 168, 72072, 37752000, 21636143100, 13053584427840, 8141901337189620, 5198083656717631680, 3376354693360163389875, 2222371681246143931063560, 1478289894198059998030179204, 991793399749992922720024531872, 670139971927397485144595595426978, 455519420546971097210713116712430400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS "Other hypergeometric 'blind spots' for Christol’s conjecture" - (see Bostan link). LINKS Gheorghe Coserea, Table of n, a(n) for n = 0..300 A. Bostan, S. Boukraa, G. Christol, S. Hassani, J-M. Maillard Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity, arXiv:1211.6031 [math-ph], 2012. FORMULA G.f.: hypergeom([2/9, 4/9, 7/9], [1/3, 1], 729*x). D-finite with recurrence n^2*(3*n-2)*a(n) -3*(9*n-7)*(9*n-5)*(9*n-2)*a(n-1)=0. - R. J. Mathar, Jul 27 2022 EXAMPLE 1 + 168*x + 72072*x^2 + 37752000*x^3 + ... MATHEMATICA HypergeometricPFQ[{2/9, 4/9, 7/9}, {1/3, 1}, 729 x] + O[x]^14 // CoefficientList[#, x]& (* Jean-François Alcover, Oct 23 2018 *) PROG (PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi"); read("hypergeom.gpi"); N = 12; x = 'x + O('x^N); Vec(hypergeom([2/9, 4/9, 7/9], [1/3, 1], 729*x, N)) CROSSREFS Cf. A268545-A268555, A275051-A275054. Sequence in context: A282375 A289327 A130215 * A364178 A275456 A185404 Adjacent sequences: A275457 A275458 A275459 * A275461 A275462 A275463 KEYWORD nonn AUTHOR Gheorghe Coserea, Jul 31 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 03:03 EST 2023. Contains 367422 sequences. (Running on oeis4.)