The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275456 G.f.: 3F2([1/9, 7/9, 8/9], [1/3, 1], 729 x). 1
 1, 168, 85680, 50388000, 31479903000, 20342022734880, 13431668094985140, 9002968680250888200, 6101557410115488321000, 4170391891453158061891200, 2869634745103513910507157888, 1985363415926004500849300108544, 1379778913200535726019164327886400, 962553011288199733460143650698784000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS "Other hypergeometric 'blind spots' for Christol’s conjecture" - (see Bostan link). LINKS Gheorghe Coserea, Table of n, a(n) for n = 0..300 A. Bostan, S. Boukraa, G. Christol, S. Hassani, J-M. Maillard Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity, arXiv:1211.6031 [math-ph], 2012. FORMULA G.f.: hypergeom([1/9, 7/9, 8/9], [1/3, 1], 729*x). a(n) = (729^n*Gamma(1/3)*Gamma(1/9+n)*Gamma(7/9+n)*Gamma(8/9+n)*sin(Pi/9)) / (Pi*n!^2*Gamma(7/9)*Gamma(1/3+n)). - Benedict W. J. Irwin, Aug 10 2016 a(n) ~ 2*sin(Pi/9)*3^(6*n-1/2) / (Gamma(2/3)*Gamma(7/9)*n^(5/9)). - Vaclav Kotesovec, Aug 13 2016 D-finite with recurrence n^2*(3*n-2)*a(n) -3*(9*n-8)*(9*n-2)*(9*n-1)*a(n-1)=0. - R. J. Mathar, Jul 27 2022 EXAMPLE 1 + 168*x + 85680*x^2 + 50388000*x^3 + ... MATHEMATICA FullSimplify[Table[(729^n Gamma[1/3]Gamma[1/9+n]Gamma[7/9+n]Gamma[8/9+n]Sin[Pi/9]) / (Pi n!^2Gamma[7/9]Gamma[1/3+n]), {n, 0, 20}]] (* Benedict W. J. Irwin, Aug 10 2016 *) CoefficientList[Series[HypergeometricPFQ[{1/9, 7/9, 8/9}, {1/3, 1}, 729*x], {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 13 2016 *) PROG (PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi"); read("hypergeom.gpi"); N = 12; x = 'x + O('x^N); Vec(hypergeom([1/9, 7/9, 8/9], [1/3, 1], 729*x, N)) CROSSREFS Cf. A268545-A268555, A275051-A275054. Sequence in context: A130215 A275460 A364178 * A185404 A146200 A159394 Adjacent sequences: A275453 A275454 A275455 * A275457 A275458 A275459 KEYWORD nonn AUTHOR Gheorghe Coserea, Jul 31 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 02:45 EST 2023. Contains 367717 sequences. (Running on oeis4.)