login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275454 G.f.: 3F2([1/9, 4/9, 8/9], [2/3, 1], 729 x). 1
1, 48, 15912, 7205484, 3731294385, 2082701917296, 1219626159039288, 738421413473848104, 458174434421099404008, 289681112497807349679360, 185894363292170517130962816, 120738965077159251405022531728, 79206198459248339865163888224660, 52397749335891513408552541281755520 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

"Other hypergeometric 'blind spots' for Christol’s conjecture" - (see Bostan link).

LINKS

Gheorghe Coserea, Table of n, a(n) for n = 0..300

A. Bostan, S. Boukraa, G. Christol, S. Hassani, J-M. Maillard Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity, arXiv:1211.6031 [math-ph], 2012.

FORMULA

G.f.: hypergeom([1/9, 4/9, 8/9], [2/3, 1], 729*x).

a(n) = (729^n*Gamma(2/3)*Gamma(1/9+n)*Gamma(4/9+n)*Gamma(8/9+n)*sin(Pi/9)) / (Pi*n!^2*Gamma(4/9)*Gamma(2/3+n)). - Benedict W. J. Irwin, Aug 09 2016

a(n) ~ 2*sin(Pi/9)*3^(6*n-1/2) / (Gamma(1/3)*Gamma(4/9)*n^(11/9)). - Vaclav Kotesovec, Aug 10 2016

EXAMPLE

1 + 48*x + 15912*x^2 + 7205484*x^3 + ...

MATHEMATICA

FullSimplify[Table[(729^n Gamma[2/3] Gamma[1/9 + n] Gamma[4/9 + n] Gamma[8/9 + n] Sin[Pi/9])/(Pi (n!)^2 Gamma[4/9] Gamma[2/3 + n]), {n, 0, 20}]] (* Benedict W. J. Irwin, Aug 09 2016 *)

CoefficientList[Series[HypergeometricPFQ[{1/9, 4/9, 8/9}, {2/3, 1}, 729*x], {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 10 2016 *)

PROG

(PARI)  \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");

read("hypergeom.gpi");

N = 12; x = 'x + O('x^N);

Vec(hypergeom([1/9, 4/9, 8/9], [2/3, 1], 729*x, N))

CROSSREFS

Cf. A268545-A268555, A275051-A275054.

Sequence in context: A275570 A307618 A225786 * A202928 A265866 A159425

Adjacent sequences:  A275451 A275452 A275453 * A275455 A275456 A275457

KEYWORD

nonn

AUTHOR

Gheorghe Coserea, Jul 31 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 12 11:25 EDT 2020. Contains 335658 sequences. (Running on oeis4.)