login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275454
G.f.: 3F2([1/9, 4/9, 8/9], [2/3, 1], 729 x).
1
1, 48, 15912, 7205484, 3731294385, 2082701917296, 1219626159039288, 738421413473848104, 458174434421099404008, 289681112497807349679360, 185894363292170517130962816, 120738965077159251405022531728, 79206198459248339865163888224660, 52397749335891513408552541281755520
OFFSET
0,2
COMMENTS
"Other hypergeometric 'blind spots' for Christol’s conjecture" - (see Bostan link).
LINKS
A. Bostan, S. Boukraa, G. Christol, S. Hassani, J-M. Maillard Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity, arXiv:1211.6031 [math-ph], 2012.
FORMULA
G.f.: hypergeom([1/9, 4/9, 8/9], [2/3, 1], 729*x).
a(n) = (729^n*Gamma(2/3)*Gamma(1/9+n)*Gamma(4/9+n)*Gamma(8/9+n)*sin(Pi/9)) / (Pi*n!^2*Gamma(4/9)*Gamma(2/3+n)). - Benedict W. J. Irwin, Aug 09 2016
a(n) ~ 2*sin(Pi/9)*3^(6*n-1/2) / (Gamma(1/3)*Gamma(4/9)*n^(11/9)). - Vaclav Kotesovec, Aug 10 2016
D-finite with recurrence n^2*(3*n-1)*a(n) -3*(9*n-5)*(9*n-8)*(9*n-1)*a(n-1)=0. - R. J. Mathar, Jul 27 2022
EXAMPLE
1 + 48*x + 15912*x^2 + 7205484*x^3 + ...
MATHEMATICA
FullSimplify[Table[(729^n Gamma[2/3] Gamma[1/9 + n] Gamma[4/9 + n] Gamma[8/9 + n] Sin[Pi/9])/(Pi (n!)^2 Gamma[4/9] Gamma[2/3 + n]), {n, 0, 20}]] (* Benedict W. J. Irwin, Aug 09 2016 *)
CoefficientList[Series[HypergeometricPFQ[{1/9, 4/9, 8/9}, {2/3, 1}, 729*x], {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 10 2016 *)
PROG
(PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
read("hypergeom.gpi");
N = 12; x = 'x + O('x^N);
Vec(hypergeom([1/9, 4/9, 8/9], [2/3, 1], 729*x, N))
CROSSREFS
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jul 31 2016
STATUS
approved