login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275453
G.f.: 3F2([1/9, 4/9, 7/9], [2/3, 1], 729 x).
1
1, 42, 13104, 5705700, 2870226450, 1565667525240, 899552741658480, 535848881630582520, 327799728893143306800, 204660966917426732512800, 129859500691523648952466560, 83483493583251639541209993720, 54254332317972702411364923299700, 35581785531539194815959254026276000
OFFSET
0,2
COMMENTS
"Other hypergeometric 'blind spots' for Christol’s conjecture" - (see Bostan link).
LINKS
A. Bostan, S. Boukraa, G. Christol, S. Hassani, J-M. Maillard Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity, arXiv:1211.6031 [math-ph], 2012.
FORMULA
G.f.: hypergeom([1/9, 4/9, 7/9], [2/3, 1], 729*x).
a(n) = 729^n*Gamma(2/3)*Gamma(1/9+n)*Gamma(4/9+n)*Gamma(7/9+n)/((n!)^2*Gamma(1/9)*Gamma(4/9)*Gamma(7/9)*Gamma(2/3+n)). - Benedict W. J. Irwin, Aug 05 2016
D-finite with recurrence n^2*(3*n-1)*a(n) -3*(9*n-5)*(9*n-8)*(9*n-2)*a(n-1)=0. - R. J. Mathar, Jul 27 2022
EXAMPLE
1 + 42*x + 13104*x^2 + 5705700*x^3 + ...
MATHEMATICA
a[n_] := FullSimplify[(729^n Gamma[2/3] Gamma[1/9 + n] Gamma[4/9 + n] Gamma[7/9 + n])/((n!)^2 Gamma[1/9] Gamma[4/9] Gamma[7/9] Gamma[2/3 + n])] (* Benedict W. J. Irwin, Aug 05 2016 *)
PROG
(PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
read("hypergeom.gpi");
N = 12; x = 'x + O('x^N);
Vec(hypergeom([1/9, 4/9, 7/9], [2/3, 1], 729*x, N))
(PARI) a(n) = round(729^n*gamma(2/3)*gamma(1/9+n)*gamma(4/9+n)*gamma(7/9+n)/((n!)^2*gamma(1/9)*gamma(4/9)*gamma(7/9)*gamma(2/3+n))) \\ Charles R Greathouse IV, Aug 05 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jul 30 2016
STATUS
approved