login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275457
G.f.: 3F2([2/9, 4/9, 5/9], [1/3, 1], 729 x).
1
1, 120, 45045, 21707400, 11708971560, 6735720993408, 4039678502036100, 2494516661768577600, 1573990406710539567750, 1009797626141015909237040, 656436978973434195655059942, 431326871057383042747830748560, 285942228994752084893009228453460, 190985447073724962020463006948873600
OFFSET
0,2
COMMENTS
"Other hypergeometric 'blind spots' for Christol’s conjecture" - (see Bostan link).
LINKS
A. Bostan, S. Boukraa, G. Christol, S. Hassani, J-M. Maillard Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity, arXiv:1211.6031 [math-ph], 2012.
FORMULA
G.f.: hypergeom([2/9, 4/9, 5/9], [1/3, 1], 729*x).
From Robert Israel, Jan 20 2017: (Start)
a(n) = (2/3)*729^n*Gamma(5/9+n)*Gamma(2/9+n)*Gamma(4/9+n)*sin((4/9)*Pi)*3^(1/2)/(Gamma(2/9)*Gamma(n+1)^2*Gamma(n+1/3)*Gamma(2/3)).
D-finite with recurrence a(n+1) = 3*(5+9*n)*(2+9*n)*(4+9*n)*a(n)/((n+1)^2*(3*n+1)).
a(n) ~ (2*sin(4*Pi/9)/(sqrt(3)*Gamma(2/9)*Gamma(2/3)))*729^n/n^(10/9).
A007949(a(n)) = A053735(n). (End)
EXAMPLE
1 + 120*x + 45045*x^2 + 21707400*x^3 + ...
MAPLE
A[0]:= 1:
for n from 0 to 20 do A[n+1]:= 3*(5+9*n)*(2+9*n)*(4+9*n)*A[n]/((n+1)^2*(3*n+1)) od:
seq(A[i], i=0..21); # Robert Israel, Jan 20 2017
MATHEMATICA
CoefficientList[HypergeometricPFQ[{2/9, 4/9, 5/9}, {1/3, 1}, 729 x] + O[x]^14, x] (* Jean-François Alcover, Sep 18 2018 *)
PROG
(PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
read("hypergeom.gpi");
N = 12; x = 'x + O('x^N);
Vec(hypergeom([2/9, 4/9, 5/9], [1/3, 1], 729*x, N))
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jul 31 2016
STATUS
approved