OFFSET
1,2
COMMENTS
Numbers k such that k*(5*k+3) is a perfect square. Apparently a(n) = 323*a(n-1) -323*a(n-2) +a(n-3). - R. J. Mathar, May 18 2013
LINKS
Index entries for linear recurrences with constant coefficients, signature (323,-323,1).
FORMULA
G.f.: 48*x*(1+x)/((1-x)*(1-322*x+x^2)). - Bruno Berselli, May 18 2013
a(n) = (3/20)*((2-sqrt(5))^(4n-4)+(2+sqrt(5))^(4n-4)-2). - Bruno Berselli, May 18 2013
EXAMPLE
48*49 + 96*97 = 108^2, so 48 is in the sequence.
MATHEMATICA
LinearRecurrence[{323, -323, 1}, {0, 48, 15552}, 15] (* Bruno Berselli, May 18 2013 *)
PROG
(C)
#include <stdio.h>
#include <math.h>
int main() {
unsigned long long i, s, t;
for (i = 0; i< (1ULL<<31); i++) {
s = 2*i*(2*i+1) + i*(i+1);
t = sqrt(s);
if (s==t*t) printf("%llu, ", i);
}
return 0;
}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, May 16 2013
EXTENSIONS
a(6) from Ralf Stephan, May 17 2013
More terms from Bruno Berselli, May 18 2013
STATUS
approved