Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #17 Apr 27 2024 07:48:25
%S 1,168,72072,37752000,21636143100,13053584427840,8141901337189620,
%T 5198083656717631680,3376354693360163389875,2222371681246143931063560,
%U 1478289894198059998030179204,991793399749992922720024531872,670139971927397485144595595426978,455519420546971097210713116712430400
%N G.f.: 3F2([2/9, 4/9, 7/9], [1/3, 1], 729 x).
%C "Other hypergeometric 'blind spots' for Christol’s conjecture" - (see Bostan link).
%H Gheorghe Coserea, <a href="/A275460/b275460.txt">Table of n, a(n) for n = 0..300</a>
%H A. Bostan, S. Boukraa, G. Christol, S. Hassani, J-M. Maillard <a href="http://arxiv.org/abs/1211.6031">Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity</a>, arXiv:1211.6031 [math-ph], 2012.
%F G.f.: hypergeom([2/9, 4/9, 7/9], [1/3, 1], 729*x).
%F D-finite with recurrence n^2*(3*n-2)*a(n) -3*(9*n-7)*(9*n-5)*(9*n-2)*a(n-1)=0. - _R. J. Mathar_, Jul 27 2022
%F a(n) ~ Gamma(1/3) * sin(2*Pi/9) * 3^(6*n) / (Pi * Gamma(4/9) * n^(8/9)). - _Vaclav Kotesovec_, Apr 27 2024
%e 1 + 168*x + 72072*x^2 + 37752000*x^3 + ...
%t HypergeometricPFQ[{2/9, 4/9, 7/9}, {1/3, 1}, 729 x] + O[x]^14 // CoefficientList[#, x]& (* _Jean-François Alcover_, Oct 23 2018 *)
%o (PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
%o read("hypergeom.gpi");
%o N = 12; x = 'x + O('x^N);
%o Vec(hypergeom([2/9, 4/9, 7/9], [1/3, 1], 729*x, N))
%Y Cf. A268545-A268555, A275051-A275054.
%K nonn
%O 0,2
%A _Gheorghe Coserea_, Jul 31 2016