login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275462
Number of leaves in all simple labeled connected graphs on n nodes.
1
0, 0, 2, 6, 48, 760, 21840, 1121568, 104510336, 18111498624, 5966666196480, 3794613745429760, 4704698796461841408, 11443317008255593064448, 54831540882238864189229056, 519046250316393184411087165440, 9726643425055315256306341282775040
OFFSET
0,3
COMMENTS
A leaf is a vertex of degree 1.
FORMULA
E.g.f.: x*A(x) = x^2* d[log(B(x))]/dx where A(x) is the e.g.f. for A053549 and B(x) is the e.g.f. for A006125.
For n>=1, a(n) = n*(n-1)*A001187(n-1).
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
end:
a:= n-> n*(n-1)*b(n-1):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 31 2016
MATHEMATICA
nn = 15; Clear[f]; f[z_] := Sum[2^Binomial[n, 2] z^n/n!, {n, 0, nn + 1}]; Range[0, nn]! CoefficientList[Series[ z z D[Log[f[z]], z] , {z, 0, nn}], z]
CROSSREFS
Cf. A095338.
Sequence in context: A175430 A003053 A113296 * A063744 A141609 A096313
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jul 28 2016
STATUS
approved