login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275465
a(n) = f^(n/f), where f is the smallest prime factor of n.
1
2, 3, 4, 5, 8, 7, 16, 27, 32, 11, 64, 13, 128, 243, 256, 17, 512, 19, 1024, 2187, 2048, 23, 4096, 3125, 8192, 19683, 16384, 29, 32768, 31, 65536, 177147, 131072, 78125, 262144, 37, 524288, 1594323, 1048576, 41, 2097152, 43, 4194304, 14348907, 8388608, 47, 16777216
OFFSET
2,1
FORMULA
a(p) = p, a(p^2) = p^p and a(p^m) = p^(p^(m-1)) for prime p. - Chai Wah Wu, Jul 29 2016
a(n) = A020639(n)^(n/A020639(n)). - Felix Fröhlich, Jul 30 2016
a(n) = A020639(n)^A032742(n). - Chai Wah Wu, Jul 30 2016
EXAMPLE
For n = 12 = 2^2*3, the smallest prime factor of n is f = 2, so a(12) = f^(n/f) = 2^(12/2) = 2^6 = 64. - Michael B. Porter, Jul 31 2016
MAPLE
a:= n-> (f-> f^(n/f))(min(numtheory[factorset](n))):
seq(a(n), n=2..50); # Alois P. Heinz, Dec 11 2017
MATHEMATICA
a[n_] := With[{f = FactorInteger[n][[1, 1]]}, f^(n/f)]; ; Array[a, 50, 2] (* JungHwan Min, Jul 29 2016 *)(* amended by Harvey P. Dale, Aug 12 2021 *)
PROG
(Python)
from __future__ import division
from sympy import primefactors
def A275465(n):
p = min(primefactors(n))
return p**(n//p) # Chai Wah Wu, Jul 29 2016
(PARI) a(n) = my(f=factor(n)[1, 1]); f^(n/f) \\ Felix Fröhlich, Jul 30 2016
CROSSREFS
Sequence in context: A086931 A243405 A164339 * A185198 A297338 A297457
KEYWORD
nonn,easy
AUTHOR
Tyler Skywalker, Jul 28 2016
EXTENSIONS
More terms from Chai Wah Wu, Jul 30 2016
STATUS
approved