login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275367
Number of odd divisors of n^2.
2
1, 1, 3, 1, 3, 3, 3, 1, 5, 3, 3, 3, 3, 3, 9, 1, 3, 5, 3, 3, 9, 3, 3, 3, 5, 3, 7, 3, 3, 9, 3, 1, 9, 3, 9, 5, 3, 3, 9, 3, 3, 9, 3, 3, 15, 3, 3, 3, 5, 5, 9, 3, 3, 7, 9, 3, 9, 3, 3, 9, 3, 3, 15, 1, 9, 9, 3, 3, 9, 9, 3, 5, 3, 3, 15, 3, 9, 9, 3, 3, 9, 3, 3, 9, 9, 3, 9, 3, 3, 15, 9, 3, 9
OFFSET
1,3
COMMENTS
All terms are odd.
First differs from A023136 at a(17).
LINKS
FORMULA
a(n) = A001227(n^2).
a(2n + 1) = A048691(2n + 1).
a(n) = A000005(n^2) if n is odd, else A000005(2*n^2) - A000005(n^2).
Multiplicative with a(2^e) = 1, a(p^e) = 2*e + 1 for odd prime p. - Andrew Howroyd, Jul 20 2018
Dirichlet g.f.: (zeta(s)^3/zeta(2*s))*(2^s-1)/(2^s+1). - Amiram Eldar, Dec 08 2022
Sum_{k=1..n} a(k) ~ n*log(n)^2/Pi^2 + 2*n*log(n)*((3*gamma + 4*log(2)/3 - 1)/Pi^2 - 12*zeta'(2)/Pi^4) + 2*n*((1 + 3*gamma^2 - 4*log(2)/3 - 2*log(2)^2/9 + gamma*(4*log(2) - 3) - 3*sg1)/Pi^2 - 4*((9*gamma*zeta'(2) + (4*log(2) - 3)*zeta'(2) + 3*zeta''(2))/Pi^4) + 144*zeta'(2)^2/Pi^6), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Dec 08 2022
MAPLE
A275367 := proc(n) local a, d;
a := 1 ;
for d in ifactors(n)[2] do
if op(1, d) > 2 then
a := a*(2*op(2, d)+1) ;
end if;
end do:
a ;
end proc:
seq(A275367(n), n=1..40) ; # R. J. Mathar, Mar 20 2023
MATHEMATICA
Table[Count[Divisors[n^2], _?OddQ], {n, 120}] (* Michael De Vlieger, Jul 25 2016 *)
f[2, e_] := 1; f[p_, e_] := 2*e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
PROG
(PARI) a(n) = sumdiv(n^2, d, d%2); \\ Michel Marcus, Jul 25 2016
(PARI) a(n)=my(f=factor(n>>valuation(n, 2))[, 2]); prod(i=1, #f, 2*f[i]+1) \\ Charles R Greathouse IV, Jul 28 2016
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
STATUS
approved