login
A348665
Number of partitions of n into 3 parts whose smallest and middle parts divide n.
1
0, 0, 1, 1, 1, 3, 1, 3, 3, 3, 1, 10, 1, 3, 6, 6, 1, 10, 1, 10, 6, 3, 1, 21, 3, 3, 6, 10, 1, 21, 1, 10, 6, 3, 6, 28, 1, 3, 6, 21, 1, 21, 1, 10, 15, 3, 1, 36, 3, 10, 6, 10, 1, 21, 6, 21, 6, 3, 1, 55, 1, 3, 15, 15, 6, 21, 1, 10, 6, 21, 1, 55, 1, 3, 15, 10, 6, 21, 1, 36, 10, 3, 1, 55
OFFSET
1,6
LINKS
FORMULA
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} c(n/j) * c(n/i), where c(n) = 1 - ceiling(n) + floor(n).
EXAMPLE
a(6) = 3; The partitions of 6 into 3 parts are [1,1,4], [1,2,3] and [2,2,2]. For each of the 3 partitions, both the smallest part and the middle part divide 6, so a(6) = 3.
MATHEMATICA
c[n_] := 1 - Ceiling[n] + Floor[n]; a[n_] := Sum[c[n/j] * c[n/i], {j, 1, Floor[n/3]}, {i, j, Floor[(n - j)/2]}]; Array[a, 100] (* Amiram Eldar, Nov 17 2021 *)
PROG
(PARI) A348665(n) = { my(ds=divisors(n)); sum(i=1, #ds, sum(j=1, i, ((n-(ds[i]+ds[j]))>=ds[i]))); }; \\ Antti Karttunen, Dec 14 2021
CROSSREFS
Sequence in context: A275367 A023136 A337333 * A152774 A275820 A210146
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Oct 30 2021
STATUS
approved