The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A348664 Numbers whose binary expansion is not rich. 1
 203, 211, 300, 308, 333, 357, 395, 406, 407, 419, 422, 423, 459, 467, 556, 564, 600, 601, 604, 616, 617, 628, 653, 666, 667, 669, 690, 709, 714, 715, 723, 741, 779, 787, 790, 791, 803, 811, 812, 813, 814, 815, 820, 835, 838, 839, 844, 845, 846, 847, 851, 869 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A word of length k is "rich" if it contains, as contiguous subsequences, exactly k + 1 distinct palindromes (including the empty word). There are A225681(k)/2 terms with k binary digits. LINKS Rémy Sigrist, Table of n, a(n) for n = 1..10000 FORMULA {k: A137397(k) <= A070939(k)}. - Michael S. Branicky, Oct 29 2021 EXAMPLE For n = 203: - the binary expansion of 203 is "11001011" and has 8 binary digits, - we have the following 8 palindromes: "", "0", "1", "00", "11", "010", "101", "1001" - so 203 is not rich, and belongs to this sequence. For n = 204: - the binary expansion of 204 is "11001100" and has 8 binary digits, - we have the following 9 palindromes: "", "0", "1", "00", "11", "0110", "1001", "001100", "110011" - so 204 is rich, and does not belong to this sequence. MATHEMATICA Select[Range@1000, Length@Select[Union[Subsequences[s=IntegerDigits[#, 2]]], PalindromeQ]<=Length@s&] (* Giorgos Kalogeropoulos, Oct 29 2021 *) PROG (PARI) is(n) = { my (b=binary(n), p=select(w->w==Vecrev(w), setbinop((i, j)->b[i..j], [1..#b]))); #b!=#p } (Python) def ispal(s): return s == s[::-1] def ok(n):   s = bin(n)[2:]   return len(s) >= 1 + len(set(s[i:j] for i in range(len(s)) for j in range(i+1, len(s)+1) if ispal(s[i:j]))) print([k for k in range(870) if ok(k)]) # Michael S. Branicky, Oct 29 2021 CROSSREFS Cf. A206926, A216264, A225681, A070939, A137397. Sequence in context: A198981 A259330 A090486 * A228320 A346899 A247921 Adjacent sequences:  A348661 A348662 A348663 * A348665 A348666 A348667 KEYWORD nonn,base AUTHOR Rémy Sigrist, Oct 28 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 17:22 EDT 2022. Contains 353978 sequences. (Running on oeis4.)