login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337333
Number of pairs of odd divisors of n, (d1,d2), such that d1 <= d2.
2
1, 1, 3, 1, 3, 3, 3, 1, 6, 3, 3, 3, 3, 3, 10, 1, 3, 6, 3, 3, 10, 3, 3, 3, 6, 3, 10, 3, 3, 10, 3, 1, 10, 3, 10, 6, 3, 3, 10, 3, 3, 10, 3, 3, 21, 3, 3, 3, 6, 6, 10, 3, 3, 10, 10, 3, 10, 3, 3, 10, 3, 3, 21, 1, 10, 10, 3, 3, 10, 10, 3, 6, 3, 3, 21, 3, 10, 10, 3, 3, 15, 3, 3, 10, 10
OFFSET
1,3
COMMENTS
Number of distinct rectangles that can be made whose side lengths are odd divisors of n.
LINKS
FORMULA
a(n) = Sum_{d1|n, d2|n, d1 and d2 odd, d1<=d2} 1.
From Bernard Schott, Aug 24 2020: (Start)
a(n) = 1 if and only if n = 2^k, k >= 0 (A000079).
a(n) = 3 if n is an odd prime. (End)
a(n) = A000217(A001227(n)). - Antti Karttunen, Dec 12 2021
EXAMPLE
a(15) = 10; There are 10 pairs of odd divisors of 15, (d1,d2), such that d1<=d2. They are: (1,1), (1,3), (1,5), (1,15), (3,3), (3,5), (3,15), (5,5), (5,15), (15,15). So a(15) = 10.
a(16) = 1; (1,1) is the only pair of odd divisors of 16, (d1,d2), such that d1<=d2. So a(16) = 1.
a(17) = 3; There are 3 pairs of odd divisors of 17, (d1,d2), such that d1<=d2. They are (1,1), (1,17) and (17,17). So a(17) = 3.
a(18) = 6; There are 6 pairs of odd divisors of 18, (d1,d2), such that d1<=d2. They are: (1,1), (1,3), (1,9), (3,3), (3,9) and (9,9). So a(18) = 6.
MATHEMATICA
Table[Sum[Sum[Mod[i, 2]*Mod[k, 2] (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k}], {k, n}], {n, 100}]
PROG
(PARI) A337333(n) = binomial(numdiv(n>>valuation(n, 2))+1, 2); \\ Antti Karttunen, Dec 12 2021
CROSSREFS
Cf. A000079, A000217, A001227 (number of odd divisors), A335841.
Sequence in context: A059789 A275367 A023136 * A348665 A152774 A275820
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 23 2020
STATUS
approved