login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337334
a(n) = pi(b(n)), where pi is the prime counting function (A000720) and b(n) = a(n-1) + b(n-1) with a(0) = b(0) = 1.
3
1, 1, 2, 3, 4, 5, 7, 9, 11, 14, 16, 21, 24, 30, 35, 42, 48, 58, 67, 78, 91, 103, 121, 138, 158, 181, 205, 233, 266, 298, 337, 378, 429, 480, 539, 602, 674, 751, 838, 930, 1031, 1147, 1274, 1402, 1556, 1715, 1896, 2090, 2296, 2527, 2777, 3047, 3340, 3669, 4016
OFFSET
0,3
COMMENTS
It can be proved that this is an increasing sequence from the theorem of Lu and Deng (see LINKS), which states "the prime gap of a prime number is less than or equal to the prime count of the prime number”, or prime(n+1) - prime(n) <= pi(prime(n)).
LINKS
Ya-Ping Lu and Shu-Fang Deng, An upper bound for the prime gap, arXiv:2007.15282 [math.GM], 2020.
FORMULA
a(n) = pi(b(n)), where b(n) = a(n-1) + b(n-1) with a(0) = b(0) = 1.
a(n) = A000720(A061535(n)), n>=1. - R. J. Mathar, Jun 18 2021
EXAMPLE
a(1) = pi(b(1)) = pi(a(0) + b(0)) = pi(1 + 1) = pi(2) = 1
a(2) = pi(b(2)) = pi(a(1) + b(1)) = pi(1 + 2) = pi(3) = 2
a(3) = pi(b(3)) = pi(a(2) + b(2)) = pi(2 + 3) = pi(5) = 3
a(4) = pi(b(4)) = pi(a(3) + b(3)) = pi(3 + 5) = pi(8) = 4
a(54)= pi(b(54))= pi(a(53)+ b(53))= pi(3669+34327)=pi(37996)=4016
MAPLE
A337334 := proc(n)
option remember;
if n = 0 then
1;
else
numtheory[pi](A061535(n)) ;
end if;
end proc:
seq(A337334(n), n=0..20) ; # R. J. Mathar, Jun 18 2021
PROG
(Python)
from sympy import primepi
a_last = 1
b_last = 1
for n in range(1, 1001):
b = a_last + b_last
a = primepi(b)
print(a)
a_last = a
b_last = b
CROSSREFS
Cf. A000720 (pi), A014688 (prime(n)+n), A332086.
Sequence in context: A067126 A274197 A286267 * A375606 A008750 A076677
KEYWORD
nonn
AUTHOR
Ya-Ping Lu, Aug 23 2020
EXTENSIONS
a(0) inserted by R. J. Mathar, Jun 18 2021
STATUS
approved