Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Mar 11 2023 07:55:30
%S 1,1,2,3,4,5,7,9,11,14,16,21,24,30,35,42,48,58,67,78,91,103,121,138,
%T 158,181,205,233,266,298,337,378,429,480,539,602,674,751,838,930,1031,
%U 1147,1274,1402,1556,1715,1896,2090,2296,2527,2777,3047,3340,3669,4016
%N a(n) = pi(b(n)), where pi is the prime counting function (A000720) and b(n) = a(n-1) + b(n-1) with a(0) = b(0) = 1.
%C It can be proved that this is an increasing sequence from the theorem of Lu and Deng (see LINKS), which states "the prime gap of a prime number is less than or equal to the prime count of the prime number”, or prime(n+1) - prime(n) <= pi(prime(n)).
%H Ya-Ping Lu and Shu-Fang Deng, <a href="https://arxiv.org/abs/2007.15282">An upper bound for the prime gap</a>, arXiv:2007.15282 [math.GM], 2020.
%F a(n) = pi(b(n)), where b(n) = a(n-1) + b(n-1) with a(0) = b(0) = 1.
%F a(n) = A000720(A061535(n)), n>=1. - _R. J. Mathar_, Jun 18 2021
%e a(1) = pi(b(1)) = pi(a(0) + b(0)) = pi(1 + 1) = pi(2) = 1
%e a(2) = pi(b(2)) = pi(a(1) + b(1)) = pi(1 + 2) = pi(3) = 2
%e a(3) = pi(b(3)) = pi(a(2) + b(2)) = pi(2 + 3) = pi(5) = 3
%e a(4) = pi(b(4)) = pi(a(3) + b(3)) = pi(3 + 5) = pi(8) = 4
%e a(54)= pi(b(54))= pi(a(53)+ b(53))= pi(3669+34327)=pi(37996)=4016
%p A337334 := proc(n)
%p option remember;
%p if n = 0 then
%p 1;
%p else
%p numtheory[pi](A061535(n)) ;
%p end if;
%p end proc:
%p seq(A337334(n),n=0..20) ; # _R. J. Mathar_, Jun 18 2021
%o (Python)
%o from sympy import primepi
%o a_last = 1
%o b_last = 1
%o for n in range(1, 1001):
%o b = a_last + b_last
%o a = primepi(b)
%o print(a)
%o a_last = a
%o b_last = b
%Y Cf. A000720 (pi), A014688 (prime(n)+n), A332086.
%K nonn
%O 0,3
%A _Ya-Ping Lu_, Aug 23 2020
%E a(0) inserted by _R. J. Mathar_, Jun 18 2021