Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #44 Mar 20 2023 15:19:13
%S 1,1,3,1,3,3,3,1,5,3,3,3,3,3,9,1,3,5,3,3,9,3,3,3,5,3,7,3,3,9,3,1,9,3,
%T 9,5,3,3,9,3,3,9,3,3,15,3,3,3,5,5,9,3,3,7,9,3,9,3,3,9,3,3,15,1,9,9,3,
%U 3,9,9,3,5,3,3,15,3,9,9,3,3,9,3,3,9,9,3,9,3,3,15,9,3,9
%N Number of odd divisors of n^2.
%C All terms are odd.
%C First differs from A023136 at a(17).
%H Charles R Greathouse IV, <a href="/A275367/b275367.txt">Table of n, a(n) for n = 1..10000</a>
%H Vaclav Kotesovec, <a href="/A275367/a275367.jpg">Graph - the asymptotic ratio (100000 terms)</a>
%F a(n) = A001227(n^2).
%F a(2n + 1) = A048691(2n + 1).
%F a(n) = A000005(n^2) if n is odd, else A000005(2*n^2) - A000005(n^2).
%F Multiplicative with a(2^e) = 1, a(p^e) = 2*e + 1 for odd prime p. - _Andrew Howroyd_, Jul 20 2018
%F Dirichlet g.f.: (zeta(s)^3/zeta(2*s))*(2^s-1)/(2^s+1). - _Amiram Eldar_, Dec 08 2022
%F Sum_{k=1..n} a(k) ~ n*log(n)^2/Pi^2 + 2*n*log(n)*((3*gamma + 4*log(2)/3 - 1)/Pi^2 - 12*zeta'(2)/Pi^4) + 2*n*((1 + 3*gamma^2 - 4*log(2)/3 - 2*log(2)^2/9 + gamma*(4*log(2) - 3) - 3*sg1)/Pi^2 - 4*((9*gamma*zeta'(2) + (4*log(2) - 3)*zeta'(2) + 3*zeta''(2))/Pi^4) + 144*zeta'(2)^2/Pi^6), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - _Vaclav Kotesovec_, Dec 08 2022
%p A275367 := proc(n) local a, d;
%p a := 1 ;
%p for d in ifactors(n)[2] do
%p if op(1, d) > 2 then
%p a := a*(2*op(2, d)+1) ;
%p end if;
%p end do:
%p a ;
%p end proc:
%p seq(A275367(n),n=1..40) ; # _R. J. Mathar_, Mar 20 2023
%t Table[Count[Divisors[n^2], _?OddQ], {n, 120}] (* _Michael De Vlieger_, Jul 25 2016 *)
%t f[2, e_] := 1; f[p_, e_] := 2*e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 11 2020 *)
%o (PARI) a(n) = sumdiv(n^2, d, d%2); \\ _Michel Marcus_, Jul 25 2016
%o (PARI) a(n)=my(f=factor(n>>valuation(n,2))[,2]); prod(i=1,#f,2*f[i]+1) \\ _Charles R Greathouse IV_, Jul 28 2016
%Y Cf. A000005, A001227, A023136, A048691.
%K nonn,easy,mult
%O 1,3
%A _Juri-Stepan Gerasimov_, Jul 24 2016