login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275156
The 108 numbers n such that n(n+1) is 17-smooth.
1
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 24, 25, 26, 27, 32, 33, 34, 35, 39, 44, 48, 49, 50, 51, 54, 55, 63, 64, 65, 77, 80, 84, 90, 98, 99, 104, 119, 120, 125, 135, 143, 153, 168, 169, 175, 195, 220, 224, 242, 255, 272, 288, 324, 350, 351, 363, 374, 384, 440, 441, 539, 560, 594, 624, 675, 714, 728, 832, 935, 1000, 1088, 1155, 1224, 1274, 1700, 1715, 2057, 2079, 2400, 2430, 2499, 2600, 3024, 4095, 4224, 4374, 4913, 5831, 6655, 9800, 10647, 12375, 14399, 28560, 31212, 37179, 123200, 194480, 336140
OFFSET
1,2
COMMENTS
This is the 7th row of the table A138180.
REFERENCES
See A002071.
MATHEMATICA
pMax = 17; smoothMax = 10^12; smoothNumbers[p_?PrimeQ, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand@Log[pp[[j]], max/Times @@ (Take[pp, j - 1]^Take[aa, j - 1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; Select[(Sqrt[1 + 4*smoothNumbers[pMax, smoothMax]] - 1)/2, IntegerQ]
PROG
(PARI) is(n)=my(t=510510); n*=n+1; while((t=gcd(n, t))>1, n/=t); n==1 \\ Charles R Greathouse IV, Nov 13 2016
KEYWORD
nonn,fini,full
AUTHOR
STATUS
approved