login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274010 Boris Stechkin function: a(n) is the number of m with 2 <= m <= n and floor(n(m-1)/m) divisible by m-1. 2
0, 0, 1, 2, 3, 3, 4, 4, 4, 5, 5, 4, 6, 6, 4, 6, 7, 5, 6, 6, 6, 8, 6, 4, 8, 9, 5, 6, 8, 6, 8, 8, 6, 8, 6, 6, 11, 9, 4, 6, 10, 8, 8, 8, 6, 10, 8, 4, 10, 11, 7, 8, 8, 6, 8, 10, 10, 10, 6, 4, 12, 12, 4, 8, 11, 9, 10, 8, 6, 8, 10, 8, 12, 12, 4, 8, 10, 8, 10, 8, 10 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Stechkin proves:
n-1 is prime iff a(n) = A000005(n).
n-1 and n+1 are twin primes, i.e., n is in A014574, iff a(n)+a(n+1) = 2*A000005(n).
If p < q are odd primes, then Sum_{k=p+1..q} (-1)^k a(k) = 0.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, Springer 2013, sec. A17.
LINKS
FORMULA
Conjecture: a(n) = tau(n) + tau(n-1) - 2, for n>=2. - Ridouane Oudra, Feb 28 2020
EXAMPLE
For n = 6, the values of m are 2,3,5,6 so a(6) = 4.
MAPLE
N:= 1000: # to get a(0) to a(N)
A:= Vector(N):
for m from 2 to N do
L:= [seq(seq(k*m+j, j=0..1), k=1..N/m)];
if L[-1] > N then L:= L[1..-2] fi;
A[L]:= map(`+`, A[L], 1);
od:
0, seq(A[i], i=1..N);
MATHEMATICA
a[n_] := Sum[Boole[Divisible[Floor[n(m-1)/m], m-1]], {m, 2, n}];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 29 2019 *)
PROG
(PARI) a(n)=sum(m=2, n, n*(m-1)\m%(m-1)==0) \\ Charles R Greathouse IV, Jun 08 2016
CROSSREFS
Sequence in context: A353241 A163515 A220348 * A213711 A072649 A266082
KEYWORD
nonn
AUTHOR
Robert Israel, Jun 06 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 11 06:30 EDT 2024. Contains 375814 sequences. (Running on oeis4.)