The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274010 Boris Stechkin function: a(n) is the number of m with 2 <= m <= n and floor(n(m-1)/m) divisible by m-1. 2
 0, 0, 1, 2, 3, 3, 4, 4, 4, 5, 5, 4, 6, 6, 4, 6, 7, 5, 6, 6, 6, 8, 6, 4, 8, 9, 5, 6, 8, 6, 8, 8, 6, 8, 6, 6, 11, 9, 4, 6, 10, 8, 8, 8, 6, 10, 8, 4, 10, 11, 7, 8, 8, 6, 8, 10, 10, 10, 6, 4, 12, 12, 4, 8, 11, 9, 10, 8, 6, 8, 10, 8, 12, 12, 4, 8, 10, 8, 10, 8, 10 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Stechkin proves: n-1 is prime iff a(n) = A000005(n). n-1 and n+1 are twin primes, i.e., n is in A014574, iff a(n)+a(n+1) = 2*A000005(n). If p < q are odd primes, then Sum_{k=p+1..q} (-1)^k a(k) = 0. REFERENCES R. K. Guy, Unsolved Problems in Number Theory, Springer 2013, sec. A17. LINKS Robert Israel, Table of n, a(n) for n = 0..10000 FORMULA Conjecture: a(n) = tau(n) + tau(n-1) - 2, for n>=2. - Ridouane Oudra, Feb 28 2020 EXAMPLE For n = 6, the values of m are 2,3,5,6 so a(6) = 4. MAPLE N:= 1000: # to get a(0) to a(N) A:= Vector(N): for m from 2 to N do L:= [seq(seq(k*m+j, j=0..1), k=1..N/m)]; if L[-1] > N then L:= L[1..-2] fi; A[L]:= map(`+`, A[L], 1); od: 0, seq(A[i], i=1..N); MATHEMATICA a[n_] := Sum[Boole[Divisible[Floor[n(m-1)/m], m-1]], {m, 2, n}]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 29 2019 *) PROG (PARI) a(n)=sum(m=2, n, n*(m-1)\m%(m-1)==0) \\ Charles R Greathouse IV, Jun 08 2016 CROSSREFS Cf. A000005, A014574, A055004. Sequence in context: A353241 A163515 A220348 * A213711 A072649 A266082 Adjacent sequences: A274007 A274008 A274009 * A274011 A274012 A274013 KEYWORD nonn AUTHOR Robert Israel, Jun 06 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 11 06:30 EDT 2024. Contains 375814 sequences. (Running on oeis4.)