|
|
A274010
|
|
Boris Stechkin function: a(n) is the number of m with 2 <= m <= n and floor(n(m-1)/m) divisible by m-1.
|
|
2
|
|
|
0, 0, 1, 2, 3, 3, 4, 4, 4, 5, 5, 4, 6, 6, 4, 6, 7, 5, 6, 6, 6, 8, 6, 4, 8, 9, 5, 6, 8, 6, 8, 8, 6, 8, 6, 6, 11, 9, 4, 6, 10, 8, 8, 8, 6, 10, 8, 4, 10, 11, 7, 8, 8, 6, 8, 10, 10, 10, 6, 4, 12, 12, 4, 8, 11, 9, 10, 8, 6, 8, 10, 8, 12, 12, 4, 8, 10, 8, 10, 8, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Stechkin proves:
n-1 is prime iff a(n) = A000005(n).
n-1 and n+1 are twin primes, i.e., n is in A014574, iff a(n)+a(n+1) = 2*A000005(n).
If p < q are odd primes, then Sum_{k=p+1..q} (-1)^k a(k) = 0.
|
|
REFERENCES
|
R. K. Guy, Unsolved Problems in Number Theory, Springer 2013, sec. A17.
|
|
LINKS
|
|
|
FORMULA
|
Conjecture: a(n) = tau(n) + tau(n-1) - 2, for n>=2. - Ridouane Oudra, Feb 28 2020
|
|
EXAMPLE
|
For n = 6, the values of m are 2,3,5,6 so a(6) = 4.
|
|
MAPLE
|
N:= 1000: # to get a(0) to a(N)
A:= Vector(N):
for m from 2 to N do
L:= [seq(seq(k*m+j, j=0..1), k=1..N/m)];
if L[-1] > N then L:= L[1..-2] fi;
A[L]:= map(`+`, A[L], 1);
od:
0, seq(A[i], i=1..N);
|
|
MATHEMATICA
|
a[n_] := Sum[Boole[Divisible[Floor[n(m-1)/m], m-1]], {m, 2, n}];
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|