Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Mar 01 2020 12:13:16
%S 0,0,1,2,3,3,4,4,4,5,5,4,6,6,4,6,7,5,6,6,6,8,6,4,8,9,5,6,8,6,8,8,6,8,
%T 6,6,11,9,4,6,10,8,8,8,6,10,8,4,10,11,7,8,8,6,8,10,10,10,6,4,12,12,4,
%U 8,11,9,10,8,6,8,10,8,12,12,4,8,10,8,10,8,10
%N Boris Stechkin function: a(n) is the number of m with 2 <= m <= n and floor(n(m-1)/m) divisible by m-1.
%C Stechkin proves:
%C n-1 is prime iff a(n) = A000005(n).
%C n-1 and n+1 are twin primes, i.e., n is in A014574, iff a(n)+a(n+1) = 2*A000005(n).
%C If p < q are odd primes, then Sum_{k=p+1..q} (-1)^k a(k) = 0.
%D R. K. Guy, Unsolved Problems in Number Theory, Springer 2013, sec. A17.
%H Robert Israel, <a href="/A274010/b274010.txt">Table of n, a(n) for n = 0..10000</a>
%F Conjecture: a(n) = tau(n) + tau(n-1) - 2, for n>=2. - _Ridouane Oudra_, Feb 28 2020
%e For n = 6, the values of m are 2,3,5,6 so a(6) = 4.
%p N:= 1000: # to get a(0) to a(N)
%p A:= Vector(N):
%p for m from 2 to N do
%p L:= [seq(seq(k*m+j,j=0..1),k=1..N/m)];
%p if L[-1] > N then L:= L[1..-2] fi;
%p A[L]:= map(`+`,A[L],1);
%p od:
%p 0, seq(A[i],i=1..N);
%t a[n_] := Sum[Boole[Divisible[Floor[n(m-1)/m], m-1]], {m, 2, n}];
%t Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Apr 29 2019 *)
%o (PARI) a(n)=sum(m=2,n,n*(m-1)\m%(m-1)==0) \\ _Charles R Greathouse IV_, Jun 08 2016
%Y Cf. A000005, A014574, A055004.
%K nonn
%O 0,4
%A _Robert Israel_, Jun 06 2016