|
|
A274012
|
|
Integers n such that n^3 is the average of a nonzero square and a nonzero fourth power.
|
|
1
|
|
|
1, 5, 16, 25, 26, 40, 41, 50, 80, 81, 125, 250, 256, 365, 386, 400, 405, 416, 425, 450, 457, 477, 625, 626, 640, 656, 800, 841, 845, 1000, 1125, 1153, 1210, 1225, 1280, 1296, 1681, 1825, 2000, 2025, 2057, 2106, 2197, 2312, 2401, 3042, 3125, 3240, 3250, 3321, 3362, 3400, 3625
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Numbers n such that 2*n^3 = x^2 + y^4 where x and y are nonzero integers, is soluble.
Square terms of this sequence are 1, 16, 25, 81, 256, 400, 625, 841, 1225, 1296, 1681, 2025, 2401, ...
A000351, the powers of 5, is a subsequence.
If n is a term, then n * k^4 is a term; as 2*n^3 = x^4 + y^2, 2 * (n * k^4)^3 = (k^3 * x)^4 + (k^6 * y)^2. (End)
|
|
LINKS
|
|
|
EXAMPLE
|
5 is a term because 5^3 = (13^2 + 3^4) / 2.
|
|
PROG
|
(PARI) is(n) = for(x=1, (2*n) ^ 0.75, if(issquare(2*n^3 - x^4)&&2*n^3-x^4>0, return(1)); 0) \\ David A. Corneth, Jun 06 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|