login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274015
Least number of the form x^2 + y^4 in exactly n ways where x and y are nonzero integers.
0
2, 17, 3026, 141457, 4740625, 113260225, 205117028945, 3234825286225
OFFSET
1,1
EXAMPLE
a(1) = 2 = 1^2 + 1^4.
a(2) = 17 = 1^2 + 2^4 = 4^2 + 1^4.
a(3) = 3026 = 25^2 + 7^4 = 49^2 + 5^4 = 55^2 + 1^4.
a(4) = 141457 = 191^2 + 18^4 = 321^2 + 14^4 = 336^2 + 13^4 = 376^2 + 3^4.
a(5) = 4740625 = 2177^2 + 6^4 = 2175^2 + 10^4 = 1800^2 + 35^4 = 800^2 + 45^4 = 513^2 + 46^4.
a(6) = 113260225 = 10640^2 + 15^4 = 10593^2 + 32^4 = 10368^2 + 49^4 = 10015^2 + 60^4 = 7967^2 + 84^4 = 5640^2 + 95^4.
PROG
(PARI) do(lim, stride=10^7)=lim\=1; my(v, t, r, top); forstep(n=0, lim-1, stride, top=min(n+stride, lim); v=vectorsmall(top-n); for(y=1, sqrtnint(top-1, 4), t=y^4; for(x=if(n>t, sqrtint(n-t)+1, 1), sqrtint(top-t), v[t+x^2-n]++)); for(i=1, #v, if(v[i]>r, r=v[i]; print(r" "i+n)))) \\ Charles R Greathouse IV, Jun 07 2016
CROSSREFS
Cf. A111925.
Sequence in context: A092415 A274053 A221207 * A279884 A060353 A002814
KEYWORD
nonn,more
AUTHOR
Altug Alkan, Jun 06 2016
EXTENSIONS
a(5)-a(6) from Charles R Greathouse IV, Jun 07 2016
a(7)-a(8) from Giovanni Resta, Jun 07 2016
STATUS
approved