login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266212
Positive integers x such that x^3 = y^4 + z^2 for some positive integers y and z.
9
8, 13, 20, 25, 40, 125, 128, 193, 200, 208, 225, 313, 320, 328, 400, 500, 605, 640, 648, 1000, 1053, 1156, 1521, 1620, 1625, 1681, 1700, 2000, 2025, 2048, 2125, 2465, 2493, 2873, 2920, 3025, 3088, 3185, 3200, 3240, 3328, 3400, 3600, 3656, 3748, 3816, 4225, 4625, 4913, 5000, 5008, 5120, 5248, 6400, 6728, 6760, 6793, 6845, 7225, 8000
OFFSET
1,1
COMMENTS
If x^3 = y^4 + z^2, then (a^(4k)*x)^3 = (a^(3k)*y)^4 + (a^(6k)*z)^2 for all a = 1,2,3,... and k = 0,1,2,... So the sequence has infinitely many terms.
Conjecture: For any integer m, there are infinitely many triples (x,y,z) of positive integers with x^4 - y^3 + z^2 = m.
This is stronger than the conjecture in A266152.
LINKS
Zhi-Wei Sun and Chai Wah Wu, Table of n, a(n) for n = 1..698 n = 1..100 from Zhi-Wei Sun
Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
EXAMPLE
a(1) = 8 since 8^3 = 4^4 + 16^2.
a(2) = 13 since 13^3 = 3^4 + 46^2.
a(3) = 20 since 20^3 = 4^4 + 88^2.
a(8) = 193 since 193^3 = 6^4 + 2681^2.
a(12) = 313 since 313^3 = 66^4 + 3419^2.
a(20) = 1000 since 1000^3 = 100^4 + 30000^2.
MATHEMATICA
SQ[n_]:=SQ[n]=n>0&&IntegerQ[Sqrt[n]]
n=0; Do[Do[If[SQ[x^3-y^4], n=n+1; Print[n, " ", x]; Goto[aa]], {y, 1, x^(3/4)}]; Label[aa]; Continue, {x, 1, 8000}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 23 2015
STATUS
approved