The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273816 Decimal expansion the Bessel moment c(3,0) = Integral_{0..inf} K_0(x)^3 dx, where K_0 is the modified Bessel function of the second kind. 6
 6, 9, 4, 8, 8, 2, 2, 7, 8, 1, 0, 7, 9, 6, 2, 9, 7, 8, 9, 4, 3, 6, 4, 3, 6, 4, 4, 5, 4, 7, 0, 8, 2, 9, 7, 5, 7, 6, 7, 4, 8, 5, 1, 1, 3, 2, 6, 0, 9, 8, 9, 1, 7, 3, 5, 1, 6, 2, 3, 8, 0, 6, 8, 8, 1, 9, 1, 4, 2, 2, 3, 3, 8, 1, 9, 9, 8, 0, 4, 1, 8, 6, 8, 3, 9, 9, 5, 2, 3, 5, 1, 8, 0, 6, 0, 9, 5, 5, 3, 7, 1, 9, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008. FORMULA c(3, 0) = 3*Gamma(1/3)^6/(32*Pi*2^(2/3)). Equals (1/2)*Pi*K[(1/4)*(2 - Sqrt[3])]*K[(1/4)*(2 + Sqrt[3])], where K(x) is the complete elliptic integral of the first kind. Also equals sqrt(3) Pi^3/8 3F2(1/2, 1/2, 1/2; 1, 1; 1/4), where 3F2 is the generalized hypergeometric function A263490. EXAMPLE 6.94882278107962978943643644547082975767485113260989173516238... MATHEMATICA c[3, 0] = 3*Gamma[1/3]^6/(32*Pi*2^(2/3)); RealDigits[c[3, 0], 10, 103][[1]] CROSSREFS Cf. A273817 (c(3,1)), A273818 (c(3,2)), A273819 (c(3,3)). Sequence in context: A246041 A131691 A258504 * A021063 A216638 A110649 Adjacent sequences:  A273813 A273814 A273815 * A273817 A273818 A273819 KEYWORD nonn,cons AUTHOR Jean-François Alcover, May 31 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 9 13:42 EDT 2021. Contains 343742 sequences. (Running on oeis4.)