The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273817 Decimal expansion the Bessel moment c(3,1) = Integral_{0..inf} x K_0(x)^3 dx, where K_0 is the modified Bessel function of the second kind. 6
 5, 8, 5, 9, 7, 6, 8, 0, 9, 6, 7, 2, 3, 6, 4, 7, 2, 2, 6, 5, 0, 3, 9, 0, 5, 7, 2, 2, 1, 8, 0, 6, 9, 2, 6, 7, 2, 7, 3, 8, 5, 0, 7, 5, 2, 4, 0, 8, 9, 6, 4, 0, 6, 5, 1, 6, 6, 5, 7, 5, 0, 4, 7, 2, 2, 5, 1, 6, 5, 2, 3, 8, 4, 8, 8, 7, 1, 3, 6, 6, 3, 5, 6, 9, 6, 5, 2, 1, 7, 8, 1, 2, 4, 1, 5, 7, 3, 9, 5, 7, 6, 5, 7, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008. FORMULA c(3, 1) = (1/12)*(PolyGamma(1, 1/3) - PolyGamma(1, 2/3)). EXAMPLE 0.585976809672364722650390572218069267273850752408964065166575... MATHEMATICA c[3, 1] = (1/12)*(PolyGamma[1, 1/3] - PolyGamma[1, 2/3]); RealDigits[c[3, 1], 10, 104][[1]] CROSSREFS Cf. A273816 (c(3,0)), A273818 (c(3,2)), A273819 (c(3,3)). Sequence in context: A213022 A198732 A202348 * A073212 A059742 A296486 Adjacent sequences:  A273814 A273815 A273816 * A273818 A273819 A273820 KEYWORD nonn,cons AUTHOR Jean-François Alcover, May 31 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 6 01:03 EDT 2021. Contains 343579 sequences. (Running on oeis4.)