

A273817


Decimal expansion the Bessel moment c(3,1) = Integral_{0..inf} x K_0(x)^3 dx, where K_0 is the modified Bessel function of the second kind.


6



5, 8, 5, 9, 7, 6, 8, 0, 9, 6, 7, 2, 3, 6, 4, 7, 2, 2, 6, 5, 0, 3, 9, 0, 5, 7, 2, 2, 1, 8, 0, 6, 9, 2, 6, 7, 2, 7, 3, 8, 5, 0, 7, 5, 2, 4, 0, 8, 9, 6, 4, 0, 6, 5, 1, 6, 6, 5, 7, 5, 0, 4, 7, 2, 2, 5, 1, 6, 5, 2, 3, 8, 4, 8, 8, 7, 1, 3, 6, 6, 3, 5, 6, 9, 6, 5, 2, 1, 7, 8, 1, 2, 4, 1, 5, 7, 3, 9, 5, 7, 6, 5, 7, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Table of n, a(n) for n=0..103.
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hepth], 2008.


FORMULA

c(3, 1) = (1/12)*(PolyGamma(1, 1/3)  PolyGamma(1, 2/3)).


EXAMPLE

0.585976809672364722650390572218069267273850752408964065166575...


MATHEMATICA

c[3, 1] = (1/12)*(PolyGamma[1, 1/3]  PolyGamma[1, 2/3]);
RealDigits[c[3, 1], 10, 104][[1]]


CROSSREFS

Cf. A273816 (c(3,0)), A273818 (c(3,2)), A273819 (c(3,3)).
Sequence in context: A213022 A198732 A202348 * A073212 A059742 A296486
Adjacent sequences: A273814 A273815 A273816 * A273818 A273819 A273820


KEYWORD

nonn,cons


AUTHOR

JeanFrançois Alcover, May 31 2016


STATUS

approved



