login
A273817
Decimal expansion the Bessel moment c(3,1) = Integral_{0..inf} x K_0(x)^3 dx, where K_0 is the modified Bessel function of the second kind.
6
5, 8, 5, 9, 7, 6, 8, 0, 9, 6, 7, 2, 3, 6, 4, 7, 2, 2, 6, 5, 0, 3, 9, 0, 5, 7, 2, 2, 1, 8, 0, 6, 9, 2, 6, 7, 2, 7, 3, 8, 5, 0, 7, 5, 2, 4, 0, 8, 9, 6, 4, 0, 6, 5, 1, 6, 6, 5, 7, 5, 0, 4, 7, 2, 2, 5, 1, 6, 5, 2, 3, 8, 4, 8, 8, 7, 1, 3, 6, 6, 3, 5, 6, 9, 6, 5, 2, 1, 7, 8, 1, 2, 4, 1, 5, 7, 3, 9, 5, 7, 6, 5, 7, 8
OFFSET
0,1
LINKS
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008.
FORMULA
c(3, 1) = (1/12)*(PolyGamma(1, 1/3) - PolyGamma(1, 2/3)).
EXAMPLE
0.585976809672364722650390572218069267273850752408964065166575...
MATHEMATICA
c[3, 1] = (1/12)*(PolyGamma[1, 1/3] - PolyGamma[1, 2/3]);
RealDigits[c[3, 1], 10, 104][[1]]
CROSSREFS
Cf. A273816 (c(3,0)), A273818 (c(3,2)), A273819 (c(3,3)).
Sequence in context: A213022 A198732 A202348 * A073212 A059742 A296486
KEYWORD
nonn,cons
AUTHOR
STATUS
approved